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Abstract—In this paper, we present an approach for enhancing quantum tensor networks through the
method of data re-uploading. The proposed framework integrates multiple layers of classical data
encoding into tensor network architectures, thereby improving their approximation capacity and
reducing the impact of barren plateaus in training. The model construction relies on tree tensor networks
combined with RX, RZ, and RY rotational gates and CNOT entanglement, while optimization is
performed using differential evolution as a gradient-free algorithm. Experimental evaluation was carried
out on the iris and wine datasets, comparing baseline tensor networks with architectures incorporating
one to three re-uploading layers. The results demonstrate a consistent reduction in training and test loss,
with accuracy, recall, and precision reaching 100% on the iris dataset for three layers and improvements
of up to 40% in prediction quality on the wine dataset. These findings confirm that data re-uploading
significantly enhances the performance and expressiveness of tensor network-based quantum models.
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I. INTRODUCTION

Today, one of the strongest challenges in
quantum machine learning is the barren plateau
phenomenon. Many researchers are struggling to
overcome it. One of the recent reviews of this
problem is given in the article [1]. The authors of the
study spent many years to comprehensively
approach the study of this phenomenon. Based on
this article, the main problems of barren plateaus are
not noise-resistant quantum computers, high
dimensionality of the scheme, many quantum gates
that would turn the quantum scheme into a regular
random number generator [2].

During our research, we also encountered the
problem of barren plateaus. We tried many
architectures, but we could not overcome the error
limit. Based on the research of the authors of the
articles [1], [3], we decided to use the method of re-
uploading data for tensor networks. Tensor networks
were chosen because they best demonstrate the
quality of training a quantum artificial intelligence
model and the result of this training [4].

The idea behind data reloading is to introduce
multiple layers of encoding for classical input data
throughout the depth of the circuit.

This method increases the expressiveness of a
quantum model even with a small number of qubits.

Unlike the traditional model of encoding classical
data only once, reloading inserts data multiple times
at different points in the quantum chain, increasing
the capacity of the model and helping to avoid
expressiveness bottlenecks.

In our work, we propose to investigate data
reloading in quantum tensor networks. Tensor
networks offer an efficient framework for
representing quantum systems and are known for
their scalability and ability to reflect entanglement
patterns. We aim to assess whether integrating
reloading into tensor network-based models can
reduce training errors and improve classification
performance.

II. LITERATURE REVIEW

One of the central challenges in quantum
machine learning (QML) is the barren plateau
phenomenon, which leads to vanishing gradients
during the training of variational quantum circuits.
This issue has been comprehensively analyzed in
recent surveys, where it was shown that barren
plateaus often arise due to high circuit depth, noise
in near-term devices, or random parameter
initialization [1], [2]. As a result, training quantum
neural networks (QNNs) becomes inefficient or even
infeasible for large-scale problems.
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Tensor networks have emerged as an effective
framework for representing large quantum systems
and have been successfully applied in quantum-
inspired classical machine learning. Architectures
such as matrix product states (MPS), tree tensor
networks (TTNs), and multiscale entanglement
renormalization ansatz (MERA) provide scalable
representations of entanglement structures. Recent
studies have also demonstrated the potential of tensor-
network quantum circuits for image classification and
other supervised learning tasks [4], [10], [14].

To address the expressiveness limitations of
variational quantum circuits, the method of data re-
uploading was proposed. Pérez—Salinas et al
showed that even a single qubit can serve as a
universal classifier when classical data is repeatedly
embedded at multiple stages of the quantum
computation [3]. This approach enhances model
capacity without significantly increasing the number
of qubits. Later works extended the idea, integrating
re-uploading into more complex QML architectures.

Another important research direction is the use of
gradient-free optimization methods. Traditional
gradient-based approaches often face difficulties due
to barren plateaus and the high cost of evaluating
quantum gradients. Algorithms such as differential
evolution [5] and other evolutionary strategies have
been proposed as alternatives, enabling robust
training of QNNs on both simulated and
experimental hardware [6], [20].

In summary, prior research highlights three main
directions relevant to our study:

e the challenges of barren plateaus in QML
[11, 12;

o the efficiency of tensor networks for scalable
quantum architectures [4], [10], [14];

o the advantages of data re-uploading and
gradient-free optimization in improving model
expressiveness and training stability [3], [5], [6], [20].

Building on these works, we investigate the
integration of data re-uploading into tensor network
models as a means to improve classification
performance and mitigate barren plateaus.

III. METHODOLOGY

In quantum machine learning algorithms, there
are the following steps:

1) Data Embedding: transforming classical data
into quantum space.

2) Model construction: selecting and building a
quantum machine learning model.

3) Model training: training a quantum machine
learning model

4) Evaluation: model validation

A. Quantum Data Embedding

The first step is very important in quantum
machine learning problems. The quality of learning
a quantum model will depend on it. There are many
ways to represent classical data in quantum space.

The most common:

e amplitude embedding;

o Dbasis embedding;

e angle embedding.

Amplitude Embedding is one of the basic
methods of encoding classical data into quantum
states, which appeared in the early stages of
Quantum Machine Learning. It was first
systematically described in the works of Maria
Schuld and Francesco Petruccione [22].

Let us have a classical vector

xz(xo,x],...,fol)eRN. (1)

We normalize it so that
N-1 )
S =1 Q)
i=0

Then the quantum state in the basis |z> will have
the form

i, 3)

where x, are the normalized components of the

vector, which act as the amplitudes of the quantum
state.

Basis Embedding is the simplest way to encode
classical data into quantum states: each integer or bit
directly corresponds to a basis state |i) [22].

Let us have a classical vector

xz(x],x2,...,xn), x, €0,1. 4)

Then the encoding into the quantum state is done
as follows:

|\|/(x) =|x]x2...xn>, %)

where |x1x2...xn> is the tensor product of the
computational basis states:

|x1x2...xn>=|x1>®|x2>®---®

X,)» (6)

In Angle Embedding the numerical features are
converted into rotation angles of parameterized
quantum gates [22].

For a scalar parameter x, :
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|w(x,)) =R, (x)[0). 7
where R, (6) rotation operator (for example,
R.,R R ):

For vector x =(x,,X,,....,X,):

()=

In our work we decided to use Angle Embedding.
We decided to use quantum gates RX, RZ to convert
classical data into quantum data. First we apply RX
layer, then RZ layer and so on until we have
features.

®R, (x,)|0). 8)

i=1

[w(x)) = @R (2)R. (x)]0). ©)

B. Model Construction

In the second stage, we chose quantum tensor
networks.

Tensor networks are a class of structured
variational quantum circuits inspired by condensed-
state physics. They represent large quantum systems
using a connected network of smaller tensors,
enabling efficient modeling and training.

In particular, tree-like tensor networks (TTNs)
and matrix-product-of-states (MPSs) are well suited
for one-dimensional and hierarchical data structures.
We use a TTN-style architecture, where each node
in the tree is implemented using rotation (RY) and
entanglement (CNOT) gates.

|w(x))=CNOT(R,(8,)|0))®(R, (8,)0)). (10)

You can see an example of such a network in
Fig. 1.

OB
—OBC

Fig. 1. Example of a quantum tensor network. RX, RZ are
used to transform classical data into a quantum
representation, and RY and CNOT are used to construct
the tensor

C. Model Training

Next, we need to choose an algorithm for training
a quantum artificial intelligence model. We chose
differential evolution [5], because gradient methods
have their drawbacks in quantum machine learning.
Due to the complexity of expressing the gradient of
a quantum circuit, Parameter Shift Rules, and its
modifications are mainly used for training [6]. This

method requires more time and resources for
training, compared to free-gradient algorithms for
quantum computing. Therefore, we settled on the
differential evolution algorithm.

D. Evaluation

After training, we need to check the quality of
training on the test sample. It is customary to divide
the sample 80 by 20, or 70 by 30.

In our work, we divided the sample 70 by 30, 70
percent — training, 30 percent — test.

E. Motivation for Data Re-uploading in Tensor
Networks

Now let's move on to the idea of re-uploading
data.

The idea of data re-uploading in quantum
machine learning was introduced by Adrian Pérez-
Salinas, Alba Cervera-Lierta, Elies Gil-Fuster, and
José 1. Latorre in their paper “Data re-uploading for
a universal quantum classifier” [3]. In their paper,
the authors demonstrate that even a single qubit can
be used to build a universal quantum classifier if a
classical subsystem is added to the quantum
processing and multiple data uploads are used. That
is, instead of the traditional division of a quantum
algorithm into the stages of “data upload —
processing — measurement”, it is proposed to
periodically re-upload classical data into a quantum
register during the computational process.

U(d,x)=U(dy)U(x)...U. (11)

where U (¢, ) is a parametric unitary operator that
parameterizes a quantum machine learning model;
U (x) is a unitary operator that is responsible for the

feature map.

In the article, the authors demonstrated the
advantages of a single qubit.

Using this idea, we hypothesize that such
layering will not only improve expressiveness but
also mitigate the barren plateau effect due to better
gradient flow along the contour. To test this
hypothesis, we designed experiments comparing
tensor networks with different numbers of reloaded
layers and evaluating their learning efficiency.

IV. RESULT OF EXPERIMENTS

This experiment involved data from the iris
dataset. We took two classes from the iris dataset.
The sample size is 100. The training sample
included 70 observations, and the training sample
included 30 observations. The tensor network
architecture was used as shown in Fig. 2

As mentioned earlier, for the feature map, the RX,
RZ gates are used (Fig. 3).
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We created three models for the experiment. The
first model had one layer of feature map and tensor
network Fig. 4. The second model had two recurrent
layers in the feature map and tensor network Fig. 5.
And the third model had three such layers Fig. 6.
The training was carried out using differential
evolution.

)

Fig. 2. Architecture of the tensor network that participated
in the experiment

-
—O0@

Fig. 3. Feature map, for converting classical data into
quantum data
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Fig. 5. Architecture of the second quantum neural
network model
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Fig 6. Architecture of the third quantum neural network
model

The results of the experiment are shown in
Tables 1 and 2.
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As we can see from the experimental results, the
best model is with the number of layers of 3.

Now consider a more complex experiment. Let's
take the wine dataset. Also two classes and 100
observations. Let's divide the sample 70 by 30. We
will train in the same way using differential evolution.
The first model will be just a tensor network without
re-uploading data Fig. 7. The second model will be
with re-uploading data. In the second model, we used
re-uploading data three times Fig. 8.

TABLE 1. RESULT OF EXPERIMENTS (IRIS DATASET)
Model Loss Train Loss Test
1 layer 0.28041 0.27966
2 layers 0.14657 0.14379
3 layers 0.02582 0.06253
TABLE II. RESULT OF EXPERIMENTS (IRIS DATASET)
> > £ 2
] e g, £ = S £,
e £ 53 £ = Z2RF 232
= 5& 3¢ § 3 2& 8-
]
< < s I~ A A
1 layer 096 097 097 092 095 1.0

2 layers 1.0 1.0 1.0 1.0 1.0 1.0
3layers 1.0 1.0 1.0 1.0 1.0 1.0

- -0E0C
B0

Fig. 7. Quantum neural network architecture without
re-uploading data
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Fig. 8. Quantum neural network architecture using multiple re-uploading data

The results of the experiments can be seen in
Tables 3 and 4.

As we can see, adding the re-uploading data
method improves the characteristics of the quantum
artificial  intelligence model several times.

According to the experimental results, it can also be
seen that there is overfitting, but when using re-
uploading data, although overfitting is preserved, if
we evaluate the metrics, the quality of prediction has
increased several times. If we evaluate these two
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models, the model with re-uploading data is better
than the usual tensor network.

TABLEIIL.  RESULT OF EXPERIMENTS (WINE DATASET)
Model Loss Train Loss Test
1 layer 0.92102 1.10513
3 layers 0.56452 0.834496
TABLEIV.  RESULT OF EXPERIMENTS (WINE DATASET)
‘] ‘] = =
T | fE|fe|FE || 2E| Sy
< [+ - S o
S |28 8| EE |7 B8 EF
< < A A
5)
E‘ 0.57 1 0.44 | 0.6 0.47 | 0.53 | 0.38
Z
% 0.84 |1 0.69 1 093 | 094 | 0.76 | 0.59
on

So, according to the results of the experiments,
we can see that adding re-uploading data to a
quantum tensor network improves its performance
several times.

V. CONCLUSION

In this paper, we consider the data re-uploading
method in quantum tensor networks as a way to
improve the quality of training and overcome the
barren plateau phenomenon.

Experimental results on the classification task
showed that increasing the number of re-uploading
layers consistently reduces the loss and improves the
accuracy, completeness, and precision. The model
with three layers achieved ideal results on both
training and test sets.

On a simple dataset (iris), we have excellent
results. As the number of layers increases, the quality
of the model increases. On a more complex dataset
(wine), when adding the re-uploading data layer, the
quality of the model also increases. Using the re-
uploading data method, we were able to improve the
quality of the model by almost 40 percent.

These results indicate that data re-uploading plays
a significant role in improving the quality of training
in quantum neural networks, especially in tensor
network architectures.

But of course, there is another side to the coin. As
the number of layers of re-uploading data increases,
the complexity of the network increases, which in
turn increases the complexity of its computation and
makes it slow to learn. These experiments also raise
the following questions: is it possible to improve the
algorithm for training tensor networks with re-
uploading data, are there other ways to use re-
uploading data, and what is the optimal way to use

re-uploading data in more complex examples, such
as the wine dataset. It also remains unclear how this
method will scale with larger datasets, more
complex classes, or more qubits.

We plan to explore and present the results of our
research in future work on all these questions.
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B. M. Cunernasos, I1. A. Unanuk. [lepe3aBanTakeHHs JaHUX B TEH30PHIH Mepeki

VY craTTi HpencTaBieHo MiAXiA J0 MOKpAIleHHS KBAHTOBUX TEH30PHHX MEPEX 3a JOIOMOrOI METOMY ITOBTOPHOTO
3aBaHTAXXEHHS JaHHUX. 3alpOIOHOBaHUI (QPEHMBOpPK IHTErpye KijbKa INApiB KIACHYHOTO KOIYBaHHS JaHHX B
apxiTeKTypu TEH30PHUX MEPEX, THM CaMUM MOKPAIIYIouW X armpoKCHMaliiHy 3/JaTHICTh Ta 3MEHINYIOYH BILIHB
Oe3IuTiqHMX IUIaTo Ha HaB4aHHs. [loOymoBa Mopeni CIMpaeThCs HAa JAEPEBOINONIOHI TEH30pHI Mepexi B IOETHAHHI 3
obepranbauMu BeHTWIIMM RX, RZ Ta RY Tta 3ammyranmictio CNOT, Tomi siK onTHMI3allisi BUKOHYETHCS 3
BHUKOPUCTAHHAM Au(epeHIIiabHOI eBOINONIT K Oe3rpamieHTHOro anroputMmy. OmiHka Oyna MpoBelcHa Ha Habopax
JIAaHUX iris Ta wine, MOpiBHIOIOYHM 0a30Bi TEH30pPHI MEPEXi 3 apXiTeKTypamy, II0 BKIIOYAIOTH BiJl OJHOTO A0 TPHOX
IapiB  MMOBTOPHOTO 3aBaHTaKEHHS. Pe3ynbraTh NEeMOHCTPYIOTH IIOCTIOBHE 3MEHIIEHHS BTpAaT HaBYaHHS Ta
TECTyBaHHS, PU [[bOMY TOYHICTh, IOBHOTA Ta Npenu3iiHicTs gocsarawots 100% Ha HaOopi AaHMX iris U TPHOX IIapiB
Ta OKPAIIYIOTh SIKICTh IporHo3yBanHs a0 80% Ha HaOopi AaHux wine. L{i pe3yabTaTi MiATBEPKYIOTh, IO TIOBTOPHE
3aBaHTAXXCHHS JaHUX 3HAYHO MiJBHUIINYE MPOAYKTHBHICTH Ta BUPA3HICTh KBAHTOBHX MOJIENIEH HA OCHOBI TEH30PHHUX
MEpEex.
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Kawu4oBi caoBa: MalldHHE HABYaHHsS, KBAHTOBI OOYMCICHHS; KBAaHTOBE MAIlIMHHE HABYAHHSA, MOBTOPHE
3aBaHTa)XCHHS; TCH30pHA Meperka; Oe3IuTiiHi m1aTo; aud)epeHIriaabHa eBOJIOIIA; KBAHTOBA HEHPOHHA Mepeka.
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