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Abstract—In this paper, we present an approach for enhancing quantum tensor networks through the 
method of data re-uploading. The proposed framework integrates multiple layers of classical data 
encoding into tensor network architectures, thereby improving their approximation capacity and 
reducing the impact of barren plateaus in training. The model construction relies on tree tensor networks 
combined with RX, RZ, and RY rotational gates and CNOT entanglement, while optimization is 
performed using differential evolution as a gradient-free algorithm. Experimental evaluation was carried 
out on the iris and wine datasets, comparing baseline tensor networks with architectures incorporating 
one to three re-uploading layers. The results demonstrate a consistent reduction in training and test loss, 
with accuracy, recall, and precision reaching 100% on the iris dataset for three layers and improvements 
of up to 40% in prediction quality on the wine dataset. These findings confirm that data re-uploading 
significantly enhances the performance and expressiveness of tensor network-based quantum models. 
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I.  INTRODUCTION 

Today, one of the strongest challenges in 
quantum machine learning is the barren plateau 
phenomenon. Many researchers are struggling to 
overcome it. One of the recent reviews of this 
problem is given in the article [1]. The authors of the 
study spent many years to comprehensively 
approach the study of this phenomenon. Based on 
this article, the main problems of barren plateaus are 
not noise-resistant quantum computers, high 
dimensionality of the scheme, many quantum gates 
that would turn the quantum scheme into a regular 
random number generator [2]. 

During our research, we also encountered the 
problem of barren plateaus. We tried many 
architectures, but we could not overcome the error 
limit. Based on the research of the authors of the 
articles [1], [3], we decided to use the method of re-
uploading data for tensor networks. Tensor networks 
were chosen because they best demonstrate the 
quality of training a quantum artificial intelligence 
model and the result of this training [4]. 

The idea behind data reloading is to introduce 
multiple layers of encoding for classical input data 
throughout the depth of the circuit. 

This method increases the expressiveness of a 
quantum model even with a small number of qubits. 

Unlike the traditional model of encoding classical 
data only once, reloading inserts data multiple times 
at different points in the quantum chain, increasing 
the capacity of the model and helping to avoid 
expressiveness bottlenecks. 

In our work, we propose to investigate data 
reloading in quantum tensor networks. Tensor 
networks offer an efficient framework for 
representing quantum systems and are known for 
their scalability and ability to reflect entanglement 
patterns. We aim to assess whether integrating 
reloading into tensor network-based models can 
reduce training errors and improve classification 
performance. 

II.  LITERATURE REVIEW 

One of the central challenges in quantum 
machine learning (QML) is the barren plateau 
phenomenon, which leads to vanishing gradients 
during the training of variational quantum circuits. 
This issue has been comprehensively analyzed in 
recent surveys, where it was shown that barren 
plateaus often arise due to high circuit depth, noise 
in near-term devices, or random parameter 
initialization [1], [2]. As a result, training quantum 
neural networks (QNNs) becomes inefficient or even 
infeasible for large-scale problems. 
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Tensor networks have emerged as an effective 
framework for representing large quantum systems 
and have been successfully applied in quantum-
inspired classical machine learning. Architectures 
such as matrix product states (MPS), tree tensor 
networks (TTNs), and multiscale entanglement 
renormalization ansatz (MERA) provide scalable 
representations of entanglement structures. Recent 
studies have also demonstrated the potential of tensor-
network quantum circuits for image classification and 
other supervised learning tasks [4], [10], [14]. 

To address the expressiveness limitations of 
variational quantum circuits, the method of data re-
uploading was proposed. Pérez–Salinas et al. 
showed that even a single qubit can serve as a 
universal classifier when classical data is repeatedly 
embedded at multiple stages of the quantum 
computation [3]. This approach enhances model 
capacity without significantly increasing the number 
of qubits. Later works extended the idea, integrating 
re-uploading into more complex QML architectures. 

Another important research direction is the use of 
gradient-free optimization methods. Traditional 
gradient-based approaches often face difficulties due 
to barren plateaus and the high cost of evaluating 
quantum gradients. Algorithms such as differential 
evolution [5] and other evolutionary strategies have 
been proposed as alternatives, enabling robust 
training of QNNs on both simulated and 
experimental hardware [6], [20]. 

In summary, prior research highlights three main 
directions relevant to our study: 

 the challenges of barren plateaus in QML 
[1], [2]; 

 the efficiency of tensor networks for scalable 
quantum architectures [4], [10], [14]; 

 the advantages of data re-uploading and 
gradient-free optimization in improving model 
expressiveness and training stability [3], [5], [6], [20]. 

Building on these works, we investigate the 
integration of data re-uploading into tensor network 
models as a means to improve classification 
performance and mitigate barren plateaus. 

III.  METHODOLOGY 
In quantum machine learning algorithms, there 

are the following steps: 
1) Data Embedding: transforming classical data 

into quantum space. 
2) Model construction: selecting and building a 

quantum machine learning model. 
3) Model training: training a quantum machine 

learning model 

4) Evaluation: model validation 
A. Quantum Data Embedding 

The first step is very important in quantum 
machine learning problems. The quality of learning 
a quantum model will depend on it. There are many 
ways to represent classical data in quantum space.  

The most common: 
 amplitude embedding; 
 basis embedding; 
 angle embedding. 
Amplitude Embedding is one of the basic 

methods of encoding classical data into quantum 
states, which appeared in the early stages of 
Quantum Machine Learning. It was first 
systematically described in the works of Maria 
Schuld and Francesco Petruccione [22]. 

Let us have a classical vector 

 0 1 1, , , .N
Nx x x x R                     (1) 

We normalize it so that 
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i
i

x




                             (2) 

Then the quantum state in the basis i  will have 
the form 

 
1
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,
N

i
i

x x i




                              (3) 

where ix  are the normalized components of the 
vector, which act as the amplitudes of the quantum 
state. 

Basis Embedding is the simplest way to encode 
classical data into quantum states: each integer or bit 
directly corresponds to a basis state |݅⟩ [22]. 

Let us have a classical vector 

 1 2, , , , .0,1n ix x x x x                  (4) 

Then the encoding into the quantum state is done 
as follows: 

  1 2 ,nx x x x                          (5) 

where 1 2 nx x x  is the tensor product of the 
computational basis states: 

1 2 1 2 ,n nx x x x x x                 (6) 

In Angle Embedding the numerical features are 
converted into rotation angles of parameterized 
quantum gates [22]. 

For a scalar parameter ix : 
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    0 ,i ix R x                     (7) 

where  R   rotation operator (for example, 
, ,x y zR R R ): 

For vector  1 2, , , nx x x x  : 

   
1

0 .
n

ii
x R x

                     (8) 

In our work we decided to use Angle Embedding. 
We decided to use quantum gates RX, RZ to convert 
classical data into quantum data. First we apply RX 
layer, then RZ layer and so on until we have 
features. 

     
1

0 .
n

z i x ii
x R z R x


                   (9) 

B. Model Construction 
In the second stage, we chose quantum tensor 

networks.  
Tensor networks are a class of structured 

variational quantum circuits inspired by condensed-
state physics. They represent large quantum systems 
using a connected network of smaller tensors, 
enabling efficient modeling and training. 

In particular, tree-like tensor networks (TTNs) 
and matrix-product-of-states (MPSs) are well suited 
for one-dimensional and hierarchical data structures. 
We use a TTN-style architecture, where each node 
in the tree is implemented using rotation (RY) and 
entanglement (CNOT) gates. 

       0 1CNOT 0 0 .y yx R R          (10) 

You can see an example of such a network in 
Fig. 1. 

 

Fig. 1. Example of a quantum tensor network. RX, RZ are 
used to transform classical data into a quantum 

representation, and RY and CNOT are used to construct 
the tensor 

C. Model Training 
Next, we need to choose an algorithm for training 

a quantum artificial intelligence model. We chose 
differential evolution [5], because gradient methods 
have their drawbacks in quantum machine learning. 
Due to the complexity of expressing the gradient of 
a quantum circuit, Parameter Shift Rules, and its 
modifications are mainly used for training [6]. This 

method requires more time and resources for 
training, compared to free-gradient algorithms for 
quantum computing. Therefore, we settled on the 
differential evolution algorithm. 

D. Evaluation 
After training, we need to check the quality of 

training on the test sample. It is customary to divide 
the sample 80 by 20, or 70 by 30. 

In our work, we divided the sample 70 by 30, 70 
percent – training, 30 percent – test. 
E. Motivation for Data Re-uploading in Tensor 
Networks 

Now let's move on to the idea of re-uploading 
data. 

The idea of data re-uploading in quantum 
machine learning was introduced by Adrián Pérez-
Salinas, Alba Cervera-Lierta, Elies Gil-Fuster, and 
José I. Latorre in their paper “Data re-uploading for 
a universal quantum classifier” [3]. In their paper, 
the authors demonstrate that even a single qubit can 
be used to build a universal quantum classifier if a 
classical subsystem is added to the quantum 
processing and multiple data uploads are used. That 
is, instead of the traditional division of a quantum 
algorithm into the stages of “data upload → 
processing → measurement”, it is proposed to 
periodically re-upload classical data into a quantum 
register during the computational process. 

     , .NU x U U x U                  (11) 

where  NU   is a parametric unitary operator that 
parameterizes a quantum machine learning model; 
 U x  is a unitary operator that is responsible for the 

feature map. 
In the article, the authors demonstrated the 

advantages of a single qubit. 
Using this idea, we hypothesize that such 

layering will not only improve expressiveness but 
also mitigate the barren plateau effect due to better 
gradient flow along the contour. To test this 
hypothesis, we designed experiments comparing 
tensor networks with different numbers of reloaded 
layers and evaluating their learning efficiency. 

IV.  RESULT OF EXPERIMENTS 
This experiment involved data from the iris 

dataset. We took two classes from the iris dataset. 
The sample size is 100. The training sample 
included 70 observations, and the training sample 
included 30 observations. The tensor network 
architecture was used as shown in Fig. 2 

As mentioned earlier, for the feature map, the RX, 
RZ gates are used (Fig. 3). 
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We created three models for the experiment. The 
first model had one layer of feature map and tensor 
network Fig. 4. The second model had two recurrent 
layers in the feature map and tensor network Fig. 5. 
And the third model had three such layers Fig. 6. 
The training was carried out using differential 
evolution. 

 
Fig. 2. Architecture of the tensor network that participated 

in the experiment 

 
Fig. 3. Feature map, for converting classical data into 

quantum data 

 
Fig. 4. Architecture of the first quantum neural network 

model 

 
Fig. 5. Architecture of the second quantum neural 

network model 

 
Fig 6. Architecture of the third quantum neural network 

model 
The results of the experiment are shown in 

Tables 1 and 2. 

As we can see from the experimental results, the 
best model is with the number of layers of 3. 

Now consider a more complex experiment. Let's 
take the wine dataset. Also two classes and 100 
observations. Let's divide the sample 70 by 30. We 
will train in the same way using differential evolution. 
The first model will be just a tensor network without 
re-uploading data Fig. 7. The second model will be 
with re-uploading data. In the second model, we used 
re-uploading data three times Fig. 8. 

TABLE I. RESULT OF EXPERIMENTS (IRIS DATASET) 

Model Loss Train Loss Test 
1 layer 0.28041 0.27966 
2 layers 0.14657 0.14379 

3 layers 0.02582 0.06253 

TABLE II. RESULT OF EXPERIMENTS (IRIS DATASET) 
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1 layer 0.96 0.97 0.97 0.92 0.95 1.0 

2 layers 1.0 1.0 1.0 1.0 1.0 1.0 

3 layers 1.0 1.0 1.0 1.0 1.0 1.0 
 

 
Fig. 7. Quantum neural network architecture without 

re-uploading data 

 

 
Fig. 8. Quantum neural network architecture using multiple re-uploading data

The results of the experiments can be seen in 
Tables 3 and 4. 

As we can see, adding the re-uploading data 
method improves the characteristics of the quantum 
artificial intelligence model several times. 

According to the experimental results, it can also be 
seen that there is overfitting, but when using re-
uploading data, although overfitting is preserved, if 
we evaluate the metrics, the quality of prediction has 
increased several times. If we evaluate these two 
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models, the model with re-uploading data is better 
than the usual tensor network. 
TABLE III. RESULT OF EXPERIMENTS (WINE DATASET) 

Model Loss Train Loss Test 
1 layer 0.92102 1.10513 
3 layers 0.56452 0.834496 

TABLE IV. RESULT OF EXPERIMENTS (WINE DATASET) 
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0.57 0.44 0.6 0.47 0.53 0.38 

3 
la

ye
rs

 

0.84 0.69 0.93 0.94 0.76 0.59 

So, according to the results of the experiments, 
we can see that adding re-uploading data to a 
quantum tensor network improves its performance 
several times. 

V.  CONCLUSION 
In this paper, we consider the data re-uploading 

method in quantum tensor networks as a way to 
improve the quality of training and overcome the 
barren plateau phenomenon. 

Experimental results on the classification task 
showed that increasing the number of re-uploading 
layers consistently reduces the loss and improves the 
accuracy, completeness, and precision. The model 
with three layers achieved ideal results on both 
training and test sets. 

On a simple dataset (iris), we have excellent 
results. As the number of layers increases, the quality 
of the model increases. On a more complex dataset 
(wine), when adding the re-uploading data layer, the 
quality of the model also increases. Using the re-
uploading data method, we were able to improve the 
quality of the model by almost 40 percent. 

These results indicate that data re-uploading plays 
a significant role in improving the quality of training 
in quantum neural networks, especially in tensor 
network architectures. 

But of course, there is another side to the coin. As 
the number of layers of re-uploading data increases, 
the complexity of the network increases, which in 
turn increases the complexity of its computation and 
makes it slow to learn. These experiments also raise 
the following questions: is it possible to improve the 
algorithm for training tensor networks with re-
uploading data, are there other ways to use re-
uploading data, and what is the optimal way to use 

re-uploading data in more complex examples, such 
as the wine dataset. It also remains unclear how this 
method will scale with larger datasets, more 
complex classes, or more qubits. 

We plan to explore and present the results of our 
research in future work on all these questions. 
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В. М. Синєглазов, П. А. Чинник. Перезавантаження даних в тензорній мережі 
У статті представлено підхід до покращення квантових тензорних мереж за допомогою методу повторного 
завантаження даних. Запропонований фреймворк інтегрує кілька шарів класичного кодування даних в 
архітектури тензорних мереж, тим самим покращуючи їх апроксимаційну здатність та зменшуючи вплив 
безплідних плато на навчання. Побудова моделі спирається на деревоподібні тензорні мережі в поєднанні з 
обертальними вентилями RX, RZ та RY та заплутаністю CNOT, тоді як оптимізація виконується з 
використанням диференціальної еволюції як безградієнтного алгоритму. Оцінка була проведена на наборах 
даних iris та wine, порівнюючи базові тензорні мережі з архітектурами, що включають від одного до трьох 
шарів повторного завантаження. Результати демонструють послідовне зменшення втрат навчання та 
тестування, при цьому точність, повнота та прецизійність досягають 100% на наборі даних iris для трьох шарів 
та покращують якість прогнозування до 80% на наборі даних wine. Ці результати підтверджують, що повторне 
завантаження даних значно підвищує продуктивність та виразність квантових моделей на основі тензорних 
мереж. 
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Ключові слова: машинне навчання; квантові обчислення; квантове машинне навчання; повторне 
завантаження; тензорна мережа; безплідні плато; диференціальна еволюція; квантова нейронна мережа. 
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