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Abstract— This scientific work is devoted to the development of an intelligent system for the diagnosis of 

vestibular schwannoma. A new approach to the texture analysis of magnetic resonance images of 

vestibular schwannoma is proposed in order to determine the assessment of tumor growth. The use of this 

approach will prevent the risks of tumor progression and timely determine the need for surgical 

intervention. Several classes of texture descriptors were used in the study, including: first-order statistics 

(intensity histograms), gray level co-occurrence matrix, gray level run length matrix, gray level size zone 

matrix, gray level dependency matrix, as well as wavelet-transformed features. The complex use of these 

descriptors made it possible to formalize the internal microstructure of the tumor and implement an 

effective model for predicting its growth. 

Keywords—Vestibular schwannoma; diagnosis of schwannoma growth; MRI imaging; texture analysis; 

classification task. 

I. INTRODUCTION 

Schwannoma (neurinoma) is a benign tumor that 

comes from Schwann cells that form the myelin 

sheath of peripheral nerves. Most often in clinical 

practice, vestibular schwannoma is a tumor that 

arises from the vestibulocochlear nerve (VIII cranial 

nerve), extending from its vestibular part. This type 

of tumor can be approximately 8–10% of all 

intracranial tumors and up to 90% of tumors in the 

cerebellopontine angle. 

Extent of illness. According to various 

epidemiological studies, the incidence of vestibular 

schwannoma is approximately 1–2 per 100,000 

population. The frequency of diagnosis has 

increased over the past decade, which is associated 

with increased access to neuroimaging methods, 

including magnetic resonance imaging. Most often, 

schwannomas are diagnosed in the age group of 40–

60 years, with a slight female predominance. 
According to Scientific Reports, the United 

States is currently recording nearly 2,500 new cases 
of vestibular schwannoma, which accounts for 
approximately 8% of all intracranial neoplasms [1]. 

Linked to this is the urgent need for highly 
sophisticated automation of diagnostic processes, 
especially in the areas of artificial intelligence (AI). 
The use of these methods can effectively improve 
the diagnostic efficiency, reduce the impact of the 
human factor, and significantly shorten the hours 
required for the analysis of medical images. 

II. METHODS 

Detection of schwannoma is a complex, multi-step 
process, which includes a clinical examination, 
history taking, laboratory diagnostics (if necessary) 
and high-precision neuroimaging methods, such as 
computer tomography (CT) [2] and magnetic 
resonance imaging (MRI). 

Current neuroimaging allows not only to detect the 
tumor, but also to assess the dynamics of growth, the 
level of damage to surrounding tissue, the presence of 
hydrocephalus and other complications [3]. However, 
due to the fact that the early stages of the disease may 
have mildly expressed symptoms or may be 
asymptomatic, early diagnosis of schwannoma 
requires the use of highly sensitive and automated 
instruments, powered by artificial intelligence. 
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A. The need for texture analysis 

Significant progress has been made in automated 
segmentation of medical images using convolutional 
neural networks and transformers, and methods that 
focus more on the geometric and morphological 
characteristics of tumor, such as shape, size and 
localization. However, to fully understand the 
biological behavior of tumor tissue, particularly its 
growth potential, it is necessary to recognize 
microstructural tissue features that are not always 
visible in standard images. 

In this context, texture analysis is of particular 
value – a method that allows one to clearly assess 
the internal heterogeneity of tissues by analyzing 
spatial variations in signal intensity in images. 
Textural signs, such as entropy, homogeneity, 
contrast and other statistical parameters, can reflect 
the histological features of the tumor, cell density, 
presence of necrosis, microvessel density/diameter. 

The research shows that the use of texture analysis 
in combination with machine learning methods makes 
it possible to create predictive models that can assess 
the likelihood of growth of vestibular schwannoma. 
For example, the study by George–Jones et al. (2020) 
demonstrated that texture and morphological features 
extracted from MRI images can be useful in 
predicting significant increase in tumor after 
stereotactic radiosurgery. A model based on these 
characteristics achieved a sensitivity of 92% and a 
specificity of 65% in predicting a volume increase 
greater than 20% of the tumor volume [4]. 

In addition, a study published in the journal 
Otology & Neurotology [5] showed that the textural 
characteristics of vestibular schwannomas on MRI 
images can reflect the histological features of the 
tumor, such as the presence of mucin, lymphocytes 
and hemosiderin. It is important to note the potential 
of texture analysis in non-invasively measuring the 
biological behavior of tumor. 

B. Classifiers Used 

The study used five modern classification 
algorithms: Random Forest, Balanced Random 
Forest, RUSBoost, XGBoost, and LightGBM. All 
models were selected for their efficiency when 
working with high-dimensional tabular data, as well 
as the ability to work with unbalanced samples, 
which is typical for medical problems. 

1) Random Forest 

Random Forest is an ensemble machine learning 
algorithm based on the construction of a set of 
decision trees [6]. Each tree is trained on a random 
subsample of training examples using the 
bootstrapping method, as well as on a random subset 
of features. The final decision is made by voting 

among all trees. This approach allows to reduce the 
variance of the model and ensure high resistance to 
overfitting. The model is insensitive to feature 
scaling, is able to work with categorical and 
numerical variables, and is well suited for tasks 
where interpretability and assessment of the 
importance of features are important. 

2) Balanced Random Forest 

Balanced Random Forest [7] is a modification of 
the classical Random Forest that takes into account 
the problem of unbalanced classes. Each tree in the 
forest is trained on a subsample of data obtained by 
randomly undersampling examples from the more 
represented class to achieve a balanced proportion 
between classes. Thus, at each step of the 
simulation, the algorithm forms a new subsample 
that contains the same number of examples of the 
positive and negative classes, which allows to 
increase the sensitivity of the model to the less 
represented class without losing the overall 
generalization ability. 

3) RUSBoost 

RUSBoost is an ensemble algorithm that 
combines the Random Undersampling (RUS) 
method with adaptive boosting (AdaBoost) [8]. At 
each iteration of building the ensemble from the 
training sample, a random undersampling is 
performed from the majority of the class, after which 
a weak classifier is trained. Subsequent iterations 
adaptively change the weights of the examples based 
on the errors of the previous classifier. Thus, the 
model simultaneously achieves a reduction in the 
impact of class disparity and adaptation to complex 
examples. RUSBoost is effective in tasks with strong 
class skew, in particular in medical diagnostic tasks. 

4) XGBoost (Extreme Gradient Boosting) 

XGBoost is a highly efficient implementation of 
gradient boosting for decision trees, focused on 
speed and performance [9]. The algorithm builds a 
sequence of trees, where each subsequent tree learns 
from the errors of the previous ones. The objective 
function is minimized using the second order 
gradient, which allows faster convergence to the 
optimum. In addition, XGBoost includes 
regularization of the model complexity, which 
reduces the risk of overfitting. The model supports 
work with missing values, automatic feature 
selection and is one of the most effective methods 
for structured forecasting problems. 

5) LightGBM 

LightGBM is a gradient boosting system 

designed for fast processing of large datasets with 

high feature dimensions [10]. It uses tree 

construction in the "leaf-wise" direction, which 

allows you to significantly reduce losses compared 
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to "level-wise" strategies. In addition, LightGBM 

implements an efficient histogram method for 

feature binning, which reduces computational 

complexity. The model supports early stopping, 

automatic tree complexity control, and handling of 

unbalanced data via the `scale_pos_weight` 

parameter. Thanks to these features, LightGBM 

provides high accuracy and speed, especially in 

tasks with a large amount of descriptors. 

III. TEXTURE ANALYSIS MRI IMAGE 

Texture analysis of MRI images is a powerful 

tool for the quantitative assessment of the 

heterogeneity of tumor tissue, which can represent 

the biological behavior of tumor tissue. It has the 

potential to grow. This approach makes it possible to 

identify microstructural features that are not always 

noticeable in the visual assessment of the image, and 

can be useful for predicting the clinical progression 

of illness. 

1) The main signs that characterize the growth 

of tumor 

A study by Itoyama et al. (2022) conducted a 
radiomics analysis of 64 patients with vestibular 
schwannoma, revealing that texture features such as 
low minimum signal and high inverse difference 
normalizing moment (IDMN) were significantly 
associated with rapid tumor growth. The model that 
increased texture and clinical factors achieved the 
highest diagnostic efficiency with an area under the 
curve (AUC) of 0.69, compared with models that 
were influenced by texture (AUC 0.67) or less 
clinical (AUC 0.63) factors [11]. 

Another study conducted by George–Jones et al. 
(2021), demonstrated that the textural characteristics 
of MRI images of vestibular schwannomas have a 
significant correlation with histological features of 
the tumor, such as the presence of mucin, 
lymphocytes and hemosiderin. It is important to note 
the potential of texture analysis in non-invasively 
measuring the biological behavior of tumor [5]. 

2) Methods for processing MRI images for 

texture analysis 

To carry out texture analysis of an MRI image, it 
is necessary to complete the following stages of 
image processing: 

 front processing: includes normalization of 

signal intensity, image verification and artifact 

removal; 

 segmentation: identifying a region of interest 

(ROI) that covers the tumor; 

 feature extraction: calculation of statistical 

parameters such as entropy, homogeneity, contrast, 

correlation and others that characterize the texture of 

the image; 

 analysis and modeling: the use of machine 

learning methods to generate forecasting models 

based on extracted texture marks. 

Based on a review published in PubMed Central, 

texture analysis of MRI images of cerebral tumors, 

including vestibular schwannomas, can be an 

effective tool for assessing the characteristics of the 

tumor and predicting behavior [12]. 

Texture analysis of MRI images is promising for 

directly diagnosing and predicting the growth of 

vestibular schwannoma. It allows you to obtain 

additional information about the microstructural 

features of the tumor, which can help you achieve a 

more precise treatment strategy and reduce clinical 

results. 

IV. EVALUATING THE EFFECTIVENESS OF 

CLASSIFICATION MODELS 

The evaluation of the performance of the 

classification models was based on a number of 

broad metrics that allow us to clearly assess the 

effectiveness of the algorithm and correctly assign 

objects to the target class (in this case - patients with 

progressive schwannoma) among others. For each 

model, a confusion matrix was created, including 

several key components: 

 TP (True Positive): the number of correctly 

classified positive objects; 

 TN (True Negative): the number of correctly 

classified negative objects; 

 FP (False Positive): a number of negative 

objects, incorrectly assigned to the positive class; 

 FN (False Negative): a number of positive 

objects classified as negative. 

Based on these values, the following metrics 

were calculated: 
1) Precision (accuracy of positive class 

classification) 

This metric reflects the proportion of actively 

positive environments of all applications classified 

as positive:   

 
TP

Precision .
TP FP




 

A high accuracy value indicates a low false 

positive rate. 
2) Recall (sensitivity, recall) 

Recall shows which part of the positive 

applications the model was able to correctly identify: 
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TP
Recall .

(TP FN)



 

This metric is critically important in medical 
tasks, where missing a positive case is unacceptable. 

3) Accuracy (real accuracy of classification) 

Accuracy means the proportion of correctly 
classified objects among all applications: 

 
 

TP TN
Accuracy .

TP TN FP+ FN




 
 

Despite its popularity, this metric may not be 
informative in the minds of a strong imbalance of 
classes. 

4) F1-score (harmonious average between 
Precision and Recall) 

F1-score allows you to achieve a balance between 
Precision and Recall, which is especially important 
when it comes to compensation: 

(Precision Recall)
1 2 .

(Precision Recall)
F





 

This metric is sensitive to both positive and 

negative decisions. 

5) F2-score 

F2-score is a modification of F1-score, which gives 

more Recall value. The F2 score is a modification of 

the F1 score that improves recall. It's extremely useful 

when recall is more important than precision: 

5(Precision Recall)
2 .

(4Precision+ Recall)
F


  

This metric is useful for medical purposes such 

as screening and early detection of pathologies. 

6) Gini Index 

The Gini index is based on the differential value 

of the model and is directly related to the area under 

the ROC curve (AUC): 

Gini 2 AUC 1.    

The value of  Gini 0,  1 , where 0 means the no 

discriminative power between classes, and 1 means 

perfect discrimination. The index is widely used in 

credit scoring tasks, as well as in biomedical 

information for assessing the strength of predictors. 

V. PROPOSAL APPROACH 

The problem is formulated as a binary 

classification problem. Each patient should have two 

CT scans, separated by a time interval. According to 

the criterion for clinically significant growth, 

schwannomas that have increased in volume or area 

by more than 10% (the maximum threshold) during 

the control period are classified as class 1 (positive 

class). Lesions that remained stable or did not change 

significantly are assigned to class 0 (negative class). 

Let us select a selection from N selections: 

  
1

, ,
N

i i i
x y


D  

where d

ix R  is the vector of textural signs 

extracted from the image of schwannoma for the ith 

patient, and  0,1iy   is a significant change, which 

indicates the fact of a clinically significant increase 

in new creation between two time points. 

In particular, label 1iy   assigned in cases where 

the relative increase in the volume (or area) of the 

schwannoma exceeds 10%: 

   

 

2 1

1

Δ 100%,
t t

i i
i t

i

V V
V

V




 

1, Δ _ 10if

0, el e.

%,

s
i

V i
y


 


 

The goal is to build a classification function: 

 θ : 0,1 ,df R   

which approximates the probability that the 

neoplasm has a tendency to grow, i.e.: 

   θ 1 ,i i if x P y x   

where θ are the model parameters that are tuned 

during the training process. Such a function should 

provide class prediction for new, previously unseen 

cases based only on the texture profile of the 

schwannoma in the initial image. 

For each case (patient) from the original medical 

image (MRI or CT) of the schwannoma, the tumor is 

segmented. Then, quantitative descriptors 

characterizing its texture are extracted from the 

selected area. 

VI. DESCRIPTION OF THE DESCRIPTOR 

CLASSES USED 

In this study, several classes of descriptors were 

used that allow quantitatively describing both the 

intensity and textural characteristics of the region of 

interest (ROI) corresponding to the localization of 

schwannoma on the tomographic image. All 

descriptors were normalized by Z-normalization, i.e. 

by subtracting the mean value of the sample and 
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dividing by its standard deviation. This allows 

eliminating large-scale biases between different 

types of features and ensuring correct training of 

classification models. 

The following classes of descriptors were used 

during model construction: 

Intensity histograms (First-order statistics). 
This class describes the statistical characteristics of 

the brightness distribution within the ROI without 

taking into account the spatial context. The main 

metrics include mean, standard deviation, variance, 

skewness, kurtosis, median, minimum, maximum, 

entropy, and quantiles (e.g., 25th and 75th 

percentiles). Entropy is calculated 

2log ( ),i ii
p p  where pi is the probability of 

intensity i. These features are basic indicators of the 

internal homogeneity of tissues. 

GLCM (Gray-Level Co-occurrence Matrix). It 

takes into account the frequency of occurrence of 

pairs of pixels with given intensity values that are at 

a fixed distance from each other at a certain angle. 

Based on GLCM, the following descriptors are 

calculated: contrast (which measures local 

variations), homogeneity (reflects the smoothness of 

the image), energy (sum of squares of matrix 

elements), correlation (a measure of linear 

dependence between gray levels), and entropy. 

Contrast is defined as the    2
sum , ,i j P i j   

where  ,P i j  is the normalized value of the 

coincidence between levels i and j. 

GLRLM (Gray-Level Run Length Matrix) – a 

matrix of gray level sequence lengths. It takes into 

account the number of consecutive voxels of the 

same value in a given direction. In particular, the 

metrics short-run emphasis (priority of short uniform 

areas), long-run emphasis (respectively, long ones), 

gray-level non-uniformity (non-uniformity of 

intensity levels), and others are calculated. For 

example, SRE is calculated as the sum R(i, r) / r², 

where R(i, r) – the number of sequences of length r 

for intensity level i. 

GLSZM (Gray-Level Size Zone Matrix) – 

matrix of gray level zone sizes. Unlike GLRLM, 

GLSZM is independent of direction and describes 

the number of pixels forming zones of equal 

intensity. Metrics used are small-zone emphasis, 

large-zone emphasis, zone size non-uniformity, etc. 

SZE is defined as the sum Z(i, s) / s², where Z(i, s) – 

the number of zones of size s for intensity level i. 

GLDM (Gray-Level Dependence Matrix) – 

gray level dependency matrix. It estimates how much 

a given voxel depends on its neighbors with similar 

intensity levels. Key features include dependence 

entropy and dependence non-uniformity. For 

example, DNUN is calculated as the sum of squares 

of the sum of dependencies at each gray level. 

Wavelet-transformed texture features. For 

multi-level texture analysis, a wavelet transform 

(e.g., Daubechies or Haar) was used. Each image 

volume is transformed into a set of approximation 

and detail coefficients at several decomposition 

levels. For each subgroup of coefficients, the first 

statistics are calculated: mean, standard deviation, 

energy, etc. This allows us to detect patterns on both 

small and large spatial scales. 

VII. RESULTS 

A sample of 427 pairs of images from 190 

patients was used to train the models, of which 102 

pairs showed a significant increase in the size of 

schwannoma (more than 10%). The data were taken 

from the work [13]. 

All models were trained on the same set of 

descriptors calculated from medical tomographic 

images, a total of 135 features were used. To 

ensure objective comparison, the same cross-

validation and feature preprocessing procedures 

were used. The results are shown in Table I. 

As we can see, the LGBM model performed 

best. 

Accordingly, after training the model, the 

importance of the features for it was assessed, 

and therefore the informativeness of each of the 

descriptors. Accordingly, the following turned 

out to be the most informative: 
1) wavelet_level_2_aad_mean 

This descriptor represents the average value 

of the AAD (Approximation–Approximation–

Detail) coefficients at the second level of three-

dimensional wavelet decomposition. In 3D 

decomposition, the volume is divided into 8 

subcomponents, each of which contains 

information about frequency changes along the 

corresponding axes. AAD means that the 

approximation was performed along the first 

and second axes, and the detailing was 

performed along the third. Thus, the descriptor 

reflects local variations in image intensity along 

the Z axis while preserving the global structure 

in XY. The value shows the average level of 

local complexity in the specified direction. 
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TABLE I. MODEL TRAINING RESULTS  

Model Precision Recall Accuracy F1-score F2-score Gini 

Balanced RF 0.5721 0.6842 0.6763 0.6238 0.6594 0.4279 

LGBM 0.6284 0.7127 0.7291 0.6674 0.6951 0.5418 

RUSBoost 0.5953 0.6498 0.7034 0.6221 0.6397 0.4912 

Random Forest 0.5623 0.6294 0.6898 0.5947 0.6172 0.4691 

XGBoost 0.6124 0.6843 0.7161 0.6473 0.6722 0.5176 

 

2) wavelet_level_1_ddd_mean 

This descriptor corresponds to the average value 
of the DDD (Detail–Detail–Detail) coefficients at 
the first level of wavelet decomposition. In this case, 
detailed information is preserved in all three spatial 
directions, which makes the descriptor particularly 
sensitive to high-frequency noise and fine 
inhomogeneities within the tissue. The value of such 
a descriptor allows us to assess the degree of textural 
complexity or chaoticity of the schwannoma 
structure in the volume. 

3) wavelet_level_1_ada_mean 

This descriptor denotes the average value of the 
ADA (Approximation–Detail–Approximation) 
coefficients at the first level of wavelet 
transformation. This orientation ensures the 
preservation of global features along the first and 
third axes (for example, X and Z), as well as detailed 
fixation of changes along the second (Y). It is 
sensitive to texture variations along the frontal 
plane, which allows us to detect changes in the 
structure during transverse scanning. 

4) lbp_mean_bin_4 

This descriptor refers to the local binary pattern 
(LBP) method, which encodes local texture patterns 
on each image slice. The method generates a 
histogram where each bin corresponds to a specific 
pattern of intensity transitions of pixels in the 
neighborhood. The value of lbp_mean_bin_4 is the 
average value of the fourth bin of the LBP 
histogram, calculated over all slices. It reflects the 
frequency of occurrence of one of the characteristic 
micropatterns associated with specific types of local 
heterogeneity. 

5) wavelet_level_2_ddd_mean 

The wavelet_level_2_ddd_mean descriptor is the 
average value of the detailed coefficients of the 
second level of wavelet decomposition obtained 
from filtering in all three directions. It is an 
extension of wavelet_level_1_ddd_mean, but 
characterizes larger-scale intensity fluctuations. This 
descriptor allows us to assess the presence of more 
global structural heterogeneities in tissue at lower 
spatial resolution. 

The distribution of values of the 5 most popular 

descriptors is shown in Fig. 1. 

 

Fig. 1. Distribution of values of the 5 best descriptors 
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VIII. CONCLUSION 

Diagnosis of vestibular schwannoma remains a 

complex clinical task that requires high accuracy, 

sensitivity, and interpretative objectivity. Given the 

increasing number of tumor diseases caused by both 

external factors (deterioration of the environment, 

lifestyle) and systemic health problems (lack of 

medical personnel, overload of institutions), there is 

an urgent need to implement new, intelligently 

guided diagnostic approaches. 

The article reviewed modern methods for 

isolating tumor structures using MRI, where 

magnetic resonance imaging plays a particularly 

important role as an informative, highly sensitive 

method for visualizing schwannoma. Traditional 

MRI image processing is gradually giving way to 

automated algorithms based on artificial intelligence 

– in particular, convolutional neural networks and 

transformer architectures, which provide high 

accuracy in tumor segmentation and reduce the 

human factor. 

In addition, the method of texture analysis has 

significant prospects, which allows building models 

for predicting tumor growth without significant 

computational costs, using conventional tabular 

classifiers. In this work, a classifier suitable for 

applied purposes (accuracy greater than 0.71) was 

trained and the best texture descriptors with 

significant potential for future use were selected. 

However, it is important to understand that 

detecting the tumor itself is only the first step. For a 

deeper analysis of its growth potential, it is 

necessary to implement texture analysis – a method 

for quantitatively assessing tissue heterogeneity 

based on the spatial distribution of signal intensities. 

This approach allows not only to describe the 

morphological features of schwannoma, but also to 

build prognostic models of its growth. Studies show 

that the combination of texture and clinical features 

significantly increases the accuracy of predicting the 

biological behavior of the tumor. 

Thus, the future of effective diagnosis of 

vestibular schwannoma lies in the integration of 

classical medical imaging methods with modern 

intelligent analysis systems. The combined use of 

MRI, deep neural networks, transformers and texture 

analysis opens the way to more accurate, faster and 

personalized medical diagnostics, which will 

significantly improve the quality of treatment of 

patients with brain tumors. 
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В. М. Синєглазов, А. В. Шеруда, Шевченко М. В. Інтелектуальна система діагностики вестибулярної 

шванноми 

Наукову роботу присвячено розробці інтелектуальної системи діагностики вестибулярної шванноми. 

Запропоновано новий підхід до аналізу текстури МРТ-зображень шванном як методу оцінки зростання 

пухлини. Використання цього підходу допоможе уникнути ризиків прогресування новоутворення та негайно 

усунути необхідність хірургічного втручання. В межах дослідження було об’єднано низку класів 

дескрипторів текстури, включаючи: статистику першого порядку (гістограми інтенсивності), матрицю 

співзустрічей рівнів сірого, матрицю довжин серій рівнів сірого, матрицю розмірів зон, матрицю 

залежностей рівнів сірого, а також ознаки, перетворені за допомогою вейвлет-перетворення. Комплексний 

аналіз цих дескрипторів дозволив формалізувати внутрішню мікроструктуру пухлини та реалізувати 

ефективну модель для прогнозування його зростання. 

Ключові слова: вестибулярна шваннома; діагностування росту шваноми; МРТ-зображення; текстурний аналіз; 

задача класифікації. 
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