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Abstract— This scientific work is devoted to the development of an intelligent system for the diagnosis of

vestibular schwannoma. A new approach to the texture analysis of magnetic resonance images of

vestibular schwannoma is proposed in order to determine the assessment of tumor growth. The use of this

approach will prevent the risks of tumor progression and timely determine the need for surgical

intervention. Several classes of texture descriptors were used in the study, including: first-order statistics

(intensity histograms), gray level co-occurrence matrix, gray level run length matrix, gray level size zone

matrix, gray level dependency matrix, as well as wavelet-transformed features. The complex use of these

descriptors made it possible to formalize the internal microstructure of the tumor and implement an

effective model for predicting its growth.

Keywords—Vestibular schwannoma; diagnosis of schwannoma growth; MRI imaging; texture analysis;

classification task.
I. INTRODUCTION

Schwannoma (neurinoma) is a benign tumor that
comes from Schwann cells that form the myelin
sheath of peripheral nerves. Most often in clinical
practice, vestibular schwannoma is a tumor that
arises from the vestibulocochlear nerve (VIII cranial
nerve), extending from its vestibular part. This type
of tumor can be approximately 8-10% of all
intracranial tumors and up to 90% of tumors in the
cerebellopontine angle.

Extent of illness. According to various
epidemiological studies, the incidence of vestibular
schwannoma is approximately 1-2 per 100,000
population. The frequency of diagnosis has
increased over the past decade, which is associated
with increased access to neuroimaging methods,
including magnetic resonance imaging. Most often,
schwannomas are diagnosed in the age group of 40—
60 years, with a slight female predominance.

According to Scientific Reports, the United
States is currently recording nearly 2,500 new cases
of vestibular schwannoma, which accounts for
approximately 8% of all intracranial neoplasms [1].

Linked to this is the urgent need for highly
sophisticated automation of diagnostic processes,
especially in the areas of artificial intelligence (Al).
The use of these methods can effectively improve
the diagnostic efficiency, reduce the impact of the
human factor, and significantly shorten the hours
required for the analysis of medical images.

II. METHODS

Detection of schwannoma is a complex, multi-step
process, which includes a clinical examination,
history taking, laboratory diagnostics (if necessary)
and high-precision neuroimaging methods, such as
computer tomography (CT) [2] and magnetic
resonance imaging (MRI).

Current neuroimaging allows not only to detect the
tumor, but also to assess the dynamics of growth, the
level of damage to surrounding tissue, the presence of
hydrocephalus and other complications [3]. However,
due to the fact that the early stages of the disease may
have mildly expressed symptoms or may be
asymptomatic, early diagnosis of schwannoma
requires the use of highly sensitive and automated
instruments, powered by artificial intelligence.
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A. The need for texture analysis

Significant progress has been made in automated
segmentation of medical images using convolutional
neural networks and transformers, and methods that
focus more on the geometric and morphological
characteristics of tumor, such as shape, size and
localization. However, to fully understand the
biological behavior of tumor tissue, particularly its
growth potential, it is necessary to recognize
microstructural tissue features that are not always
visible in standard images.

In this context, texture analysis is of particular
value — a method that allows one to clearly assess
the internal heterogeneity of tissues by analyzing
spatial variations in signal intensity in images.
Textural signs, such as entropy, homogeneity,
contrast and other statistical parameters, can reflect
the histological features of the tumor, cell density,
presence of necrosis, microvessel density/diameter.

The research shows that the use of texture analysis
in combination with machine learning methods makes
it possible to create predictive models that can assess
the likelihood of growth of vestibular schwannoma.
For example, the study by George—Jones et al. (2020)
demonstrated that texture and morphological features
extracted from MRI images can be useful in
predicting significant increase in tumor after
stereotactic radiosurgery. A model based on these
characteristics achieved a sensitivity of 92% and a
specificity of 65% in predicting a volume increase
greater than 20% of the tumor volume [4].

In addition, a study published in the journal
Otology & Neurotology [5] showed that the textural
characteristics of vestibular schwannomas on MRI
images can reflect the histological features of the
tumor, such as the presence of mucin, lymphocytes
and hemosiderin. It is important to note the potential
of texture analysis in non-invasively measuring the
biological behavior of tumor.

B. Classifiers Used

The study used five modern classification
algorithms: Random Forest, Balanced Random
Forest, RUSBoost, XGBoost, and LightGBM. All
models were selected for their efficiency when
working with high-dimensional tabular data, as well
as the ability to work with unbalanced samples,
which is typical for medical problems.

1) Random Forest

Random Forest is an ensemble machine learning
algorithm based on the construction of a set of
decision trees [6]. Each tree is trained on a random
subsample of training examples using the
bootstrapping method, as well as on a random subset
of features. The final decision is made by voting

among all trees. This approach allows to reduce the
variance of the model and ensure high resistance to
overfitting. The model is insensitive to feature
scaling, is able to work with categorical and
numerical variables, and is well suited for tasks
where interpretability and assessment of the
importance of features are important.

2) Balanced Random Forest

Balanced Random Forest [7] is a modification of
the classical Random Forest that takes into account
the problem of unbalanced classes. Each tree in the
forest is trained on a subsample of data obtained by
randomly undersampling examples from the more
represented class to achieve a balanced proportion
between classes. Thus, at each step of the
simulation, the algorithm forms a new subsample
that contains the same number of examples of the
positive and negative classes, which allows to
increase the sensitivity of the model to the less
represented class without losing the overall
generalization ability.

3) RUSBoost

RUSBoost is an ensemble algorithm that
combines the Random Undersampling (RUS)
method with adaptive boosting (AdaBoost) [8]. At
each iteration of building the ensemble from the
training sample, a random undersampling is
performed from the majority of the class, after which
a weak classifier is trained. Subsequent iterations
adaptively change the weights of the examples based
on the errors of the previous classifier. Thus, the
model simultaneously achieves a reduction in the
impact of class disparity and adaptation to complex
examples. RUSBoost is effective in tasks with strong
class skew, in particular in medical diagnostic tasks.

4) XGBoost (Extreme Gradient Boosting)

XGBoost is a highly efficient implementation of
gradient boosting for decision trees, focused on
speed and performance [9]. The algorithm builds a
sequence of trees, where each subsequent tree learns
from the errors of the previous ones. The objective
function is minimized using the second order
gradient, which allows faster convergence to the
optimum. In addition, XGBoost includes
regularization of the model complexity, which
reduces the risk of overfitting. The model supports
work with missing values, automatic feature
selection and is one of the most effective methods
for structured forecasting problems.

5) LightGBM

LightGBM is a gradient boosting system
designed for fast processing of large datasets with
high feature dimensions [10]. It uses tree
construction in the "leaf-wise" direction, which
allows you to significantly reduce losses compared
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to "level-wise" strategies. In addition, LightGBM
implements an efficient histogram method for
feature binning, which reduces computational
complexity. The model supports early stopping,
automatic tree complexity control, and handling of
unbalanced data via the ‘scale pos weight’
parameter. Thanks to these features, LightGBM
provides high accuracy and speed, especially in
tasks with a large amount of descriptors.

III. TEXTURE ANALYSIS MRI IMAGE

Texture analysis of MRI images is a powerful
tool for the quantitative assessment of the
heterogeneity of tumor tissue, which can represent
the biological behavior of tumor tissue. It has the
potential to grow. This approach makes it possible to
identify microstructural features that are not always
noticeable in the visual assessment of the image, and
can be useful for predicting the clinical progression
of illness.

1) The main signs that characterize the growth
of tumor

A study by Itoyama et al. (2022) conducted a
radiomics analysis of 64 patients with vestibular
schwannoma, revealing that texture features such as
low minimum signal and high inverse difference
normalizing moment (IDMN) were significantly
associated with rapid tumor growth. The model that
increased texture and clinical factors achieved the
highest diagnostic efficiency with an area under the
curve (AUC) of 0.69, compared with models that
were influenced by texture (AUC 0.67) or less
clinical (AUC 0.63) factors [11].

Another study conducted by George—Jones et al.
(2021), demonstrated that the textural characteristics
of MRI images of vestibular schwannomas have a
significant correlation with histological features of
the tumor, such as the presence of mucin,
lymphocytes and hemosiderin. It is important to note
the potential of texture analysis in non-invasively
measuring the biological behavior of tumor [5].

2) Methods for processing MRI images for
texture analysis

To carry out texture analysis of an MRI image, it
is necessary to complete the following stages of
image processing:

e front processing: includes normalization of
signal intensity, image verification and artifact
removal;

e segmentation: identifying a region of interest
(ROI) that covers the tumor;

o feature extraction: calculation of statistical
parameters such as entropy, homogeneity, contrast,

correlation and others that characterize the texture of
the image;

e analysis and modeling: the use of machine
learning methods to generate forecasting models
based on extracted texture marks.

Based on a review published in PubMed Central,
texture analysis of MRI images of cerebral tumors,
including vestibular schwannomas, can be an
effective tool for assessing the characteristics of the
tumor and predicting behavior [12].

Texture analysis of MRI images is promising for
directly diagnosing and predicting the growth of
vestibular schwannoma. It allows you to obtain
additional information about the microstructural
features of the tumor, which can help you achieve a
more precise treatment strategy and reduce clinical
results.

IV. EVALUATING THE EFFECTIVENESS OF
CLASSIFICATION MODELS

The evaluation of the performance of the
classification models was based on a number of
broad metrics that allow us to clearly assess the
effectiveness of the algorithm and correctly assign
objects to the target class (in this case - patients with
progressive schwannoma) among others. For each
model, a confusion matrix was created, including
several key components:

o TP (True Positive): the number of correctly
classified positive objects;

o TN (True Negative): the number of correctly
classified negative objects;

e FP (False Positive): a number of negative
objects, incorrectly assigned to the positive class;

e FN (False Negative): a number of positive
objects classified as negative.

Based on these values, the following metrics
were calculated:

1) Precision
classification)

This metric reflects the proportion of actively
positive environments of all applications classified
as positive:

(accuracy of positive class

TP

Precision = ——————.
(TP+FP)

A high accuracy value indicates a low false
positive rate.
2) Recall (sensitivity, recall)

Recall shows which part of the positive
applications the model was able to correctly identify:
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Recall = L

(TP+FN)’

This metric is critically important in medical
tasks, where missing a positive case is unacceptable.
3) Accuracy (real accuracy of classification)

Accuracy means the proportion of correctly
classified objects among all applications:

(TP+TN)
(TP+TN+FP+FN)

Accuracy =

Despite its popularity, this metric may not be
informative in the minds of a strong imbalance of
classes.

4) Fl-score (harmonious
Precision and Recall)

Fl-score allows you to achieve a balance between
Precision and Recall, which is especially important
when it comes to compensation:

average between

Fle? (Precision- Recall)
(Precision+ Recall)”

This metric is sensitive to both positive and
negative decisions.

5) F2-score

F2-score is a modification of F1-score, which gives
more Recall value. The F2 score is a modification of
the F1 score that improves recall. It's extremely useful
when recall is more important than precision:

_ 5(Precision- Recall)

F2= — .
(4 Precision + Recall)

This metric is useful for medical purposes such
as screening and early detection of pathologies.

6) Gini Index

The Gini index is based on the differential value
of the model and is directly related to the area under
the ROC curve (AUC):

Gini =2- AUC-1.

The value of Gini e [0, 1] , where 0 means the no

discriminative power between classes, and 1 means
perfect discrimination. The index is widely used in
credit scoring tasks, as well as in biomedical
information for assessing the strength of predictors.

V. PROPOSAL APPROACH

The problem is formulated as a binary
classification problem. Each patient should have two
CT scans, separated by a time interval. According to
the criterion for clinically significant growth,

schwannomas that have increased in volume or area

by more than 10% (the maximum threshold) during

the control period are classified as class 1 (positive

class). Lesions that remained stable or did not change

significantly are assigned to class 0 (negative class).
Let us select a selection from N selections:

N

D= {(xi’yi)};:l ’

where x, € RY is the vector of textural signs
extracted from the image of schwannoma for the ith
patient, and y, € {O,l} is a significant change, which

indicates the fact of a clinically significant increase
in new creation between two time points.
In particular, label y, =1 assigned in cases where

the relative increase in the volume (or area) of the
schwannoma exceeds 10%:

I, if AV _i>10%,
Yi=
0, else.

The goal is to build a classification function:
1y RO —>[0.1],
that the

which approximates the probability
neoplasm has a tendency to grow, i.e.:

fe(xi) zP(J’i zlxi)’

where 0 are the model parameters that are tuned
during the training process. Such a function should
provide class prediction for new, previously unseen
cases based only on the texture profile of the
schwannoma in the initial image.

For each case (patient) from the original medical
image (MRI or CT) of the schwannoma, the tumor is
segmented. Then,  quantitative descriptors
characterizing its texture are extracted from the
selected area.

VI. DESCRIPTION OF THE DESCRIPTOR
CLASSES USED

In this study, several classes of descriptors were
used that allow quantitatively describing both the
intensity and textural characteristics of the region of
interest (ROI) corresponding to the localization of
schwannoma on the tomographic image. All
descriptors were normalized by Z-normalization, i.e.
by subtracting the mean value of the sample and
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dividing by its standard deviation. This allows
eliminating large-scale biases between different
types of features and ensuring correct training of
classification models.

The following classes of descriptors were used
during model construction:

Intensity histograms (First-order statistics).
This class describes the statistical characteristics of
the brightness distribution within the ROI without
taking into account the spatial context. The main
metrics include mean, standard deviation, variance,
skewness, kurtosis, median, minimum, maximum,
entropy, and quantiles (e.g., 25th and 75th
percentiles). Entropy is calculated

—Zipi log,(p;), where p; is the probability of

intensity i. These features are basic indicators of the
internal homogeneity of tissues.

GLCM (Gray-Level Co-occurrence Matrix). It
takes into account the frequency of occurrence of
pairs of pixels with given intensity values that are at
a fixed distance from each other at a certain angle.
Based on GLCM, the following descriptors are
calculated:  contrast (which measures local
variations), homogeneity (reflects the smoothness of
the image), energy (sum of squares of matrix
elements), correlation (a measure of linear
dependence between gray levels), and entropy.

Contrast is defined as the sum(i—j)z'P(i,j),

where P(i, j) is the normalized value of the

coincidence between levels i and j.

GLRLM (Gray-Level Run Length Matrix) — a
matrix of gray level sequence lengths. It takes into
account the number of consecutive voxels of the
same value in a given direction. In particular, the
metrics short-run emphasis (priority of short uniform
areas), long-run emphasis (respectively, long ones),
gray-level non-uniformity (non-uniformity of
intensity levels), and others are calculated. For
example, SRE is calculated as the sum R(i, r) / 72,
where R(i, r) — the number of sequences of length r
for intensity level i.

GLSZM (Gray-Level Size Zone Matrix) —
matrix of gray level zone sizes. Unlike GLRLM,
GLSZM is independent of direction and describes
the number of pixels forming zones of equal
intensity. Metrics used are small-zone emphasis,
large-zone emphasis, zone size non-uniformity, etc.
SZE is defined as the sum Z(i, s) / 52, where Z(i, s) —
the number of zones of size s for intensity level i.

GLDM (Gray-Level Dependence Matrix) —
gray level dependency matrix. It estimates how much
a given voxel depends on its neighbors with similar

intensity levels. Key features include dependence
entropy and dependence non-uniformity. For
example, DNUN is calculated as the sum of squares
of the sum of dependencies at each gray level.

Wavelet-transformed texture features. For
multi-level texture analysis, a wavelet transform
(e.g., Daubechies or Haar) was used. Each image
volume is transformed into a set of approximation
and detail coefficients at several decomposition
levels. For each subgroup of coefficients, the first
statistics are calculated: mean, standard deviation,
energy, etc. This allows us to detect patterns on both
small and large spatial scales.

VII. RESULTS

A sample of 427 pairs of images from 190
patients was used to train the models, of which 102
pairs showed a significant increase in the size of
schwannoma (more than 10%). The data were taken
from the work [13].

All models were trained on the same set of
descriptors calculated from medical tomographic
images, a total of 135 features were used. To
ensure objective comparison, the same cross-
validation and feature preprocessing procedures
were used. The results are shown in Table L.

As we can see, the LGBM model performed
best.

Accordingly, after training the model, the
importance of the features for it was assessed,
and therefore the informativeness of each of the
descriptors. Accordingly, the following turned
out to be the most informative:

1) wavelet level 2 aad mean

This descriptor represents the average value
of the AAD (Approximation—Approximation—
Detail) coefficients at the second level of three-
dimensional wavelet decomposition. In 3D
decomposition, the volume is divided into 8
subcomponents, each of which contains
information about frequency changes along the
corresponding axes. AAD means that the
approximation was performed along the first
and second axes, and the detailing was
performed along the third. Thus, the descriptor
reflects local variations in image intensity along
the Z axis while preserving the global structure
in XY. The value shows the average level of
local complexity in the specified direction.
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TABLE . MODEL TRAINING RESULTS
Model Precision | Recall Accuracy | Fl-score | F2-score | Gini
Balanced RF 0.5721 0.6842 0.6763 0.6238 0.6594 0.4279
LGBM 0.6284 0.7127 0.7291 0.6674 0.6951 0.5418
RUSBoost 0.5953 0.6498 0.7034 0.6221 0.6397 0.4912
Random Forest 0.5623 0.6294 0.6898 0.5947 0.6172 0.4691
XGBoost 0.6124 0.6843 0.7161 0.6473 0.6722 0.5176

2) wavelet level 1 ddd mean

This descriptor corresponds to the average value
of the DDD (Detail-Detail-Detail) coefficients at
the first level of wavelet decomposition. In this case,
detailed information is preserved in all three spatial
directions, which makes the descriptor particularly
sensitive to high-frequency mnoise and fine
inhomogeneities within the tissue. The value of such
a descriptor allows us to assess the degree of textural
complexity or chaoticity of the schwannoma
structure in the volume.

3) wavelet level 1 ada mean

This descriptor denotes the average value of the

ADA (Approximation—Detail-Approximation)
coefficients at the first level of wavelet
transformation. This orientation ensures the

preservation of global features along the first and
third axes (for example, X and Z), as well as detailed
fixation of changes along the second (Y). It is
sensitive to texture variations along the frontal
plane, which allows us to detect changes in the
structure during transverse scanning.

4) Ibp mean_ bin 4

wavelet_level 2_aad_mean wavelet level 1 ddd_mean

wavelet level 1 ada mean

This descriptor refers to the local binary pattern
(LBP) method, which encodes local texture patterns
on each image slice. The method generates a
histogram where each bin corresponds to a specific
pattern of intensity transitions of pixels in the
neighborhood. The value of Ibp mean bin 4 is the
average value of the fourth bin of the LBP
histogram, calculated over all slices. It reflects the
frequency of occurrence of one of the characteristic
micropatterns associated with specific types of local
heterogeneity.

5) wavelet level 2 ddd mean

The wavelet level 2 ddd mean descriptor is the
average value of the detailed coefficients of the
second level of wavelet decomposition obtained
from filtering in all three directions. It is an
extension of wavelet level 1 ddd mean, but
characterizes larger-scale intensity fluctuations. This
descriptor allows us to assess the presence of more
global structural heterogeneities in tissue at lower
spatial resolution.

The distribution of values of the 5 most popular
descriptors is shown in Fig. 1.

lbp_mean_bin_4 wavelet level 2_ddd_mean
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VIII. CONCLUSION

Diagnosis of vestibular schwannoma remains a
complex clinical task that requires high accuracy,
sensitivity, and interpretative objectivity. Given the
increasing number of tumor diseases caused by both
external factors (deterioration of the environment,
lifestyle) and systemic health problems (lack of
medical personnel, overload of institutions), there is
an urgent need to implement new, intelligently
guided diagnostic approaches.

The article reviewed modern methods for
isolating tumor structures using MRI, where
magnetic resonance imaging plays a particularly
important role as an informative, highly sensitive
method for visualizing schwannoma. Traditional
MRI image processing is gradually giving way to
automated algorithms based on artificial intelligence
— in particular, convolutional neural networks and
transformer architectures, which provide high
accuracy in tumor segmentation and reduce the
human factor.

In addition, the method of texture analysis has
significant prospects, which allows building models
for predicting tumor growth without significant
computational costs, using conventional tabular
classifiers. In this work, a classifier suitable for
applied purposes (accuracy greater than 0.71) was
trained and the best texture descriptors with
significant potential for future use were selected.

However, it is important to understand that
detecting the tumor itself is only the first step. For a
deeper analysis of its growth potential, it is
necessary to implement texture analysis — a method
for quantitatively assessing tissue heterogeneity
based on the spatial distribution of signal intensities.
This approach allows not only to describe the
morphological features of schwannoma, but also to
build prognostic models of its growth. Studies show
that the combination of texture and clinical features
significantly increases the accuracy of predicting the
biological behavior of the tumor.

Thus, the future of effective diagnosis of
vestibular schwannoma lies in the integration of
classical medical imaging methods with modern
intelligent analysis systems. The combined use of
MRI, deep neural networks, transformers and texture
analysis opens the way to more accurate, faster and
personalized medical diagnostics, which will
significantly improve the quality of treatment of
patients with brain tumors.
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