Optimizing Kubernetes Autoscaling with Artificial Intelligence
DOI:
https://doi.org/10.18372/1990-5548.84.20186Keywords:
autoscaling, Kubernets, Kolmogorov–Arnold network, Fourier analysis network, transfomer, time-series forecasting, long short-term memoryAbstract
This study explores how to improve Kubernetes auto-scaling using artificial intelligence based forecasting. The authors emphasize the limitations of traditional, reactive auto-scaling methods that lag behind rapid changes in demand and propose a proactive approach that predicts future resource requirements. The paper presents a framework for integrating artificial intelligence based predictions into the Kubernetes ecosystem to improve operational efficiency and resource utilization. To address the main challenges, the authors focus on improving workload forecasting and mitigating the impact of random fluctuations in Kubernetes performance. To address this issue, they use time-series forecasting models combined with data preprocessing techniques to predict future CPU utilization and thus inform scaling decisions before peaks or troughs in demand occur. The results show that artificial intelligence based forecasting can significantly improve scaling accuracy, reduce latency, and optimize resource utilization in Kubernetes environments. Time-series models are developed and evaluated using real CPU utilization data from a Kubernetes cluster, including RNN, LSTM, and CNN-GRU. The study also explores new architectures such as Fourier Analysis Network and Kolmogorov–Arnold Network and their integration with the transformer model. In general, the proposed approach aims to improve resource efficiency and application reliability in Kubernetes through proactive automatic scaling.
References
AI-Powered Predictive Scaling in Kubernetes: Reducing Cloud Costs While Maintaining High Availability. URL: https://dev.to/sarthakkarora/ai-powered-predictive-scaling-in-kubernetes-reducing-cloud-costs-while-maintaining-high-4ah0.
Autoscaling Workloads. URL: https://kubernetes.io/docs/concepts/workloads/autoscaling/.
Autoscaling in Kubernetes: Why doesn’t the Horizontal Pod Autoscaler work for me? URL: https://medium.com/expedia-group-tech/autoscaling-in-kubernetes-why-doesnt-the-horizontal-pod-autoscaler-work-for-me-5f0094694054.
Saibot. GitHub - saibot94/cpu-dataset-prometheus: Anonymized CPU usage dataset. GitHub. https://github.com/saibot94/cpu-dataset-prometheus.
A Angel, (2024). Denoising data with Fast Fourier Transform - using Python. https://medium.com/@angelAjcabul/denoising-data-with-fast-fourier-transform-277bc84e84a4.
Gábor Petneházi: Recurrent Neural Networks for Time Series Forecasting. arXiv preprint arXiv:1901.00069, 2019.
L. Nashold and R. Krishnan, (2020). Using LSTM and SARIMA Models to Forecast Cluster CPU Usage. https://cs229.stanford.edu/proj2020spr/report/Nashold_Krishnan.pdf.
Sharmasaravanan, (2024). Time-Series Forecasting Using GRU: A Step-by-Step Guide. https://sharmasaravanan.medium.com/time-series-forecasting-using-gru-a-step-by-step-guide-b537dc8dcfba.
Ghani Rizky Naufal and Antoni Wibowo, (2023). Time Series Forecasting Based on Deep Learning CNN-LSTM-GRU Model on Stock Prices. https://doi.org/10.14445/22315381/IJETT-V71I6P215
Yihong Dong, Ge Li, Yongding Tao, Xue Jiang, Kechi Zhang, Jia Li, Jinliang Deng, Jing Su, Jun Zhang, and Jingjing Xu, FAN: Fourier Analysis Networks. arXiv preprint arXiv:2410.02675, 2024.
Sam Jeong and Hae Yong Kim, Convolutional Fourier Analysis Network (CFAN): A Unified Time-Frequency Approach for ECG Classification. arXiv preprint arXiv:2502.00497, 2025.
Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljačić, Thomas Y. Hou, and Max Tegmark, KAN: Kolmogorov-Arnold Networks. arXiv preprint arXiv:2404.19756, 2024.
Kim C. Raath, Katherine B. Ensor, Alena Crivello, and David W. Scott, (2023). Denoising Non-Stationary Signals via Dynamic Multivariate Complex Wavelet Thresholding. https://doi.org/10.3390/e25111546
Mina Kemiha, Empirical mode decomposition and normalshrink tresholding for speech denoising. arXiv preprint arXiv:1405.7895, 2014. https://doi.org/10.5121/ijit.2014.3203
Bingze Dai and Wen Bai, Denoising ECG by Adaptive Filter with Empirical Mode Decomposition. arXiv preprint arXiv:2108.08376, 2021.
Kunpeng Xu, Lifei Chen, and Shengrui Wang, Kolmogorov-Arnold Networks for Time Series: Bridging Predictive Power and Interpretability. arXiv preprint arXiv:2406.02496, 2024.
Xiao Han, Xinfeng Zhang, Yiling Wu, Zhenduo Zhang, and Zhe Wu, Are KANs Effective for Multivariate Time Series Forecasting? arXiv preprint arXiv:2408.11306, 2024.
Xingyi Yang and Xinchao Wang, Kolmogorov-arnold transformer. arXiv preprint arXiv:2409.10594, 2024.
Downloads
Published
Issue
Section
License
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).