Проблеми мультиспектральної обробки зображень у сільському господарстві
DOI:
https://doi.org/10.18372/1990-5548.83.19866Ключові слова:
гіперспектральна зйомка, точне землеробство, прогнозування врожайності, супутниковий моніторинг, моніторинг за допомогою дронів, спектральні індекси, згорткові нейронні мережіАнотація
Це дослідження надає комплексний порівняльний аналіз супутникових та дронових платформ для агромоніторингу, з особливим акцентом на можливості мультиспектральної зйомки. Наш аналіз показує, що супутникові системи забезпечують широке покриття та є економічно вигідними для моніторингу великих територій, тоді як дрони пропонують вищу просторову роздільну здатність (до 2,5 см/піксель) і більшу гнучкість у збиранні цільових даних, що робить їх ідеальними для середніх за розміром сільськогосподарських угідь. Дослідження розглядає ключові технології та платформи дистанційного зондування, зокрема супутникову систему Sentinel-2 та сенсори, встановлені на дронах, такі як MicaSense RedEdge-MX, оцінюючи їх ефективність у критично важливих сільськогосподарських застосуваннях. У статті також досліджується застосування згорткових нейронних мереж для обробки мультиспектральних даних, демонструючи їх виняткову здатність до вирішення важливих аграрних завдань, зокрема класифікації культур, виявлення хвороб та оцінки стресу рослин. Включаючи до навчання нейромереж спектральні індекси теплові індекси та біофізичні параметри (LAI, вміст хлорофілу), розробляємо надійну систему для агромоніторингу та прогнозування врожайності. Це дослідження робить внесок як у теоретичне розуміння дистанційного зондування в сільському господарстві, так і в розробку практичних рекомендацій для впровадження рішень точного землеробства, що сприяють підвищенню продуктивності та сталому розвитку сучасних агросистем.
Посилання
A. F. H. Goetz, G. Vane, J. E. Solomon, & B. N. Rock, “Imaging spectrometry for Earth remote sensing,” Science, 228(4704), 1147–1153, 1985. https://doi.org/10.1126/science.228.4704.1147
R. D. Jackson, S. B. Idso, R. J. Reginato, & P. J. Pinter, “Canopy temperature as a crop water stress indicator,” Water Resources Research, 17(4), 1133–1138, 1981. https://doi.org/10.1029/WR017i004p01133
D. B. Lobell, D. Thau, C. Seifert, E. Engle, & B. Little, “A scalable satellite-based crop yield mapper,” Remote Sensing of Environment, 164, 324–333, 2015. https://doi.org/10.1016/j.rse.2015.02.016
D. J. Mulla, “Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps,” Biosystems Engineering, 114(4), 358–371, 2013. https://doi.org/10.1016/j.biosystemseng.2012.08.009
L. Ma, Y. Liu, X. Zhang, Y. Ye, G. Yin, & B. A. Johnson, “Deep learning in remote sensing applications: A meta-analysis and review,” ISPRS Journal of Photogrammetry and Remote Sensing, 152, 166–177, 2019. https://doi.org/10.1016/j.isprsjprs.2019.04.015
M. Drusch, U. Del Bello, S. Carlier, O. Colin, V. Fernandez, F. Gascon, ... & P. Bargellini, “Sentinel-2: ESA's Optical High-Resolution Mission for GMES Operational Services,” Remote Sensing of Environment, 120, 25–36, 2012. https://doi.org/10.1016/j.rse.2011.11.026
C. Zhang, & J. M. Kovacs, “The application of small unmanned aerial systems for precision agriculture: a review,” Precision Agriculture, 13(6), 693–712, 2012. https://doi.org/10.1007/s11119-012-9274-5
A. Matese, P. Toscano, S. F. Di Gennaro, L. Genesio, F. P. Vaccari, J. Primicerio, ... & M. Mancini, “Intercomparison of UAV, aircraft, and satellite remote sensing platforms for precision viticulture,” Remote Sensing, 7(3), 2971–2990, 2015. https://doi.org/10.3390/rs70302971
J. Boulent, P. Foucher, J. Théau, & S. St-Charles, “Convolutional neural networks for the automatic identification of plant diseases. Computers and Electronics in Agriculture,” 2019. https://doi.org/10.3389/fpls.2019.00941
N. Gorelick, M. Hancher, M. Dixon, S. Ilyushchenko, D. Thau, & R. Moore, “Google Earth Engine: Planetary-scale geospatial analysis for everyone” Remote Sensing of Environment, 202, 18–27, 2017. https://doi.org/10.1016/j.rse.2017.06.031
J. G. P. W. Clevers, & L. Kooistra, “Using hyperspectral remote sensing data for retrieving canopy chlorophyll and nitrogen content,” IEEE Transactions on Geoscience and Remote Sensing, 2012. https://doi.org/10.1109/JSTARS.2011.2176468
J. A. Foley, N. Ramankutty, K. A. Brauman, E. S. Cassidy, J. S. Gerber, M. Johnston,, … & D. P. Zaks, Moscow, Solutions for a cultivated planet. Nature, 478, 2011, pp. 337–342. https://doi.org/10.1038/nature10452
D. B. Lobell, W. Schlenker, & J. Costa-Roberts, Climate trends and global crop production since Science, 333(6042), 616–620, 1980. https://doi.org/10.1126/science.1204531
D. B. Lobell, M. B. Burke, C. Tebaldi, , M. D. Mastrandrea, W. P. Falcon, & R. L. Naylor, “Prioritizing climate change adaptation needs for food security in 2030,” Science, 319(5863), 607–610, 2007. https://doi.org/10.1126/science.1152339
A. K. Mahlein,, T. Rumpf, P. Welke, H. W. Dehne, L. Plümer, U. Steiner,, & E. C. Oerke, “Development of spectral indices for detecting and identifying plant diseases, Remote Sensing of Environment, 128, 21–30, 2012. https://doi.org/10.1016/j.rse.2012.09.019
J. Pretty, “Agricultural sustainability: Concepts, principles, and evidence, Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1491), 447–465, 2008. https://doi.org/10.1098/rstb.2007.2163
P. S. Thenkabail, J. G. Lyon, & A. Huete, “Biophysical and Biochemical Characterization and Plant Species Studies,” 2018. https://doi.org/10.1201/9780429431180
Y. Wang,, H. Zhang,, & X. Li, “Urban Tree Canopy Mapping Based on Double-Branch Convolutional Neural Network and Multi-Temporal High Spatial Resolution Satellite Imagery,” 2023. https://doi.org/10.3390/rs15030765
H. Petersson, D. Gustavsson, and D. Bergstrom, “Deep learning approaches for hyperspectral image analysis: A review. Remote Sensing,” 2016 Sixth International Conference on Image Processing Theory, Tools and Applications (IPTA), 2016. https://doi.org/10.1109/IPTA.2016.7820963
J. Xue, & B. Su, “Significant remote sensing vegetation indices: A review of developments and applications,” Sensors, 2017. https://doi.org/10.1155/2017/1353691
Lin Ke, Gong Liang, Huang Yixiang, Liu Chengliang, and Pan Junsong, “Deep learning-based segmentation and quantification of cucumber powdery mildew using convolutional neural networks, Computers and Electronics in Agriculture, vol. 10, 2019. https://doi.org/10.3389/fpls.2019.00155
R. Gebbers and V. Adamchuck, “Precision Agriculture and Food Security,” vol. 327, no. 5967, 828–831, 2010, https://doi.org/10.1126/science.1183899
C. Toth, and G. Jóźków, “Remote sensing platforms and sensors: A survey,” ISPRS Journal of Photogrammetry and Remote Sensing, vol. 115, pp. 22–36, May 2016, https://doi.org/10.1016/j.isprsjprs.2015.10.004
R. Martínez-Peña, S. Vélez, R. Vacas, H. Martín, and S. Álvarez, “Remote Sensing for Sustainable Pistachio Cultivation and Improved Quality Traits Evaluation through Thermal and Non-Thermal UAV Vegetation Indices,” Appl. Sci., 13(13), 7716, 2023, https://doi.org/10.3390/app13137716
Anne M. Thompson, Herman G. J. Smit, Debra E. Kollonige, Ryan M. Stauffer, Field Measurements for Passive Environmental Remote Sensing, Instrumentation, Intensive Campaigns, and Satellite Applications 2023, pp. 57–78. https://doi.org/10.1016/B978-0-12-823953-7.00011-3
S. P. Mohanty, D. P. Hughes, & M. Salathé, “Using deep learning for image-based plant disease detection,” Frontiers in Plant Science, 7, 1419. 2016. https://doi.org/10.3389/fpls.2016.01419
A. Kamilaris, &, F. X. Prenafeta-Boldú, “Deep learning in agriculture: A survey,” Computers and Electronics in Agriculture, vol. 147, pp. 70–90, April 2018. https://doi.org/10.1016/j.compag.2018.02.016
M. Dyrmann, H. Karstoft, & H. S. Midtiby, “Plant species classification using deep convolutional neural networks,” Biosystems Engineering, 151, pp. 72–81, 2016. https://doi.org/10.1016/j.biosystemseng.2016.08.024
J. G. A. Barbedo, “Plant disease identification from individual lesions and spots using deep learning,” Biosystems Engineering, vol. 180, pp. 96–107, ref. 22. 2019, https://doi.org/10.1016/j.biosystemseng.2019.02.002
NASA. Harmonized Landsat and Sentinel-2 (HLS) Dataset. https://hls.gsfc.nasa.gov/ . 2021.
ESA. Sentinel-2 User Handbook. European Space Agency. 2021.
USGS. Landsat 9 Mission Overview. United States Geological Survey. 2021.
Planet. PlanetScope Imagery. 2023. https://www.planet.com/products/satellite-monitoring/
Sinergise. EO Browser. 2023. https://apps.sentinel-hub.com/eo-browser/
DJI. Phantom 4 Multispectral. 2021. https://www.dji.com/global/support/product/p4-multispectral
Parrot. Sequoia Multispectral Sensor. 2021. https://www.parrot.com/global/drones/parrot-sequoia
MicaSense. Altum Multispectral Camera. 2021. https://www.micasense.com/altum
Pix4D. Drone mapping software. 2023. https://www.pix4d.com/
DroneDeploy. Cloud-based drone software. 2023. https://www.dronedeploy.com/
ASD. FieldSpec Handheld 2 Spectroradiometer. 2021. https://www.malvernpanalytical.com/en/products/product-range/asd-range/fieldspec-range/fieldspec-handheld-2
##submission.downloads##
Опубліковано
Номер
Розділ
Ліцензія
Authors who publish with this journal agree to the following terms:
Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).