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Abstract—The work is devoted to the intelligent diagnosis of malignant skin tumors. The classification of
malignant skin tumors is presented. The greatest attention was paid to skin melanoma. The modern signs
of melanoma were analyzed: Asymmetry, Boundary, Color, and Diameter, and additionally for nodular
melanoma: Elevated, Firm, and Growing. A review of works on using artificial intelligence to diagnose
malignant skin tumors was performed. A methodology for the intelligent diagnosis of malignant skin
tumors was proposed, which is based on the use of preprocessing of dermatoscopic images and solving
the segmentation problem based on the use of a hybrid approach, which includes the use of a Segment
Anything model based on the combination of the Zero-shot learning model, which consists of an image
encoder, prompt encoder, lightweight mask decoder, with YOLOvI1. ISIC 2018 was used as the dataset.

Index Terms—Malignant skin tumors; artificial intelligence; intelligent diagnostics; dermatoscopic

images; preprocessing; hybrid approach.
I. INTRODUCTION

The development of artificial intelligence (Al)
technologies is changing our lives. Artificial
intelligence is gradually being introduced into more
and more areas of human activity. Medicine is no
exception, where Al helps recognize and analyze
various images to assist the doctor in diagnosing.

Oncological diseases have accompanied people
throughout history. Cancer is one of the main social,
medical, and economic problems of the 21st century.
Cancer is the cause of every sixth death of people on
earth (16.8%) and the cause of every fourth death
(22.8%) that occurs due to non-communicable
diseases [1].

Cancer is the cause of death for a large number of
people every year, with an estimated 9.7 million
deaths in 2022 [1]. The wide variety of malignant
tumors, their  characteristics, duration  of
development, and localization add to the difficulties
for specialists involved in their definition and
characterization. Skin cancer is one of the most
common oncological diseases worldwide, and
cancer incidence and mortality rates are constantly
increasing, mainly in regions with a white
population [2]. According to the World Health
Organization (WHO), in 2022, about 70,000 people
died from non-melanoma skin cancer. The WHO
and the ILO (International Labor Organization) have
estimated that 1 in 3 deaths from non-melanoma

skin cancer per year is caused by work in the open
sun [3]. There are 331,647 known cases of
melanoma, accounting for 1.7% of all new cancer
cases, and 58,645 deaths, accounting for 0.6% of all
cancer deaths, in 2022 [1].

Melanoma of the skin is the cause of the majority
of deaths from malignant skin neoplasms. Melanoma
is a malignant tumor that develops from melanocytes
(pigment-forming cells). Melanocytes are cells of
non-embryonic origin, located mainly in the basal
layer of the epidermis, and produce melanin pigment.
Epidermal pigment gives the skin a certain shade and
protects it from the effects of ultraviolet radiation.

An ABCD acronym was invented in 1985 [4] to
diagnose melanoma. Later, it was expanded to
ABCDE. This technique helps to determine with a
high probability whether a nevus is dangerous.

An explanation of each word of the acronym is
given below.

A — Asymmetry. When one half of the tumor is
not the same as the other.

B — Boundary. The border is irregular, jagged, or
indistinct.

C — Color. The color varies from one area to
another, with a tan or tan-like brown or black hue.

D — Diameter. The diameter of the tumor is
greater than 6 mm, which is larger than the size of a
pencil eraser.

For nodular melanomas, the following features
are defined: ABCDE+EFG [5]:
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E — Elevated. New growths that are raised above
the skin surface may be suspicious.

F — Firm. The firmness of the growth may be a
sign of nodular melanoma.

G — Growing. Nodular melanoma tends to grow.
Changes in size may be noticeable over several
weeks.

II. SKIN CANCER DATASETS

Computer analysis of skin lesions typically uses
two types of images: dermatoscopic (microscopic)
and clinical (macroscopic). Dermatoscopic images
allow the examination of features of the lesion that
are invisible to the naked eye and are not always
available, even to dermatologists. Clinical images
are of lower quality but are readily available because
they are obtained using conventional cameras.

Dermoscopy 1is a mnoninvasive method of
obtaining skin images that also allows
dermatologists to visualize subcutaneous structures.
However, this type of diagnosis has disadvantages
because it is highly dependent on the human factor.
The accuracy of dermatoscopic diagnosis can vary
from 24% to 77% depending on the level of
qualification of the dermatologist [6]. Dermoscopy
can reduce the level of diagnostic accuracy if used
by an inexperienced physician [7].

Therefore, to minimize the probability of errors
and avoid false diagnoses, it is extremely necessary
to build intelligent systems. Segmentation of skin
lesions in images is an important step in achieving
this goal. However, the presence of various artifacts
(hair or air bubbles), internal factors (variation in the
shape and contrast of the lesion), and the variability
of image acquisition conditions make segmentation
of skin tumors a difficult task.

The lack of images of sufficient quantity and
quality is a huge obstacle to the development of
segmentation models and effective intelligent
systems. Modern machine learning models, including
segmentation models, have a huge number of
parameters, which allows them to generalize features
well when trained on large volumes of labeled data
[8]. However, datasets of skin lesions, particularly
skin cancer, and all medical image datasets usually
have few samples due to the complexity of obtaining
and labeling, the right to patient privacy, and the
rarity of individual pathologies.

As mentioned earlier, clinical and dermatoscopic
images are the most common types of images used
to train skin lesion segmentation models. Clinical
images help to train the model to segment lesions
based on their external features (shape, color, size,
edge sharpness). Dermatoscopic images do not

capture the surface of the skin but reveal internal
skin structures and help identify morphological

features (spots, atypical pigment networks,
dots/globules, stripes) [9].
The ISIC (International Skin Imaging

Collaboration) archive is one of the largest
repositories of dermoscopic images. Today, the
archive contains 1,156,911 dermoscopic images,
485,127 of which are publicly available. The images
are collected from leading clinical centers around the
world and obtained using a variety of devices. The
involvement of the international community in the
input of images is designed to ensure the
representativeness of a clinically relevant sample.
All images are reviewed to ensure confidentiality
and quality. Some of the images were annotated and
marked up by skin cancer experts [10].

III. IMAGE PREPROCESSING

Image preprocessing is an important component
of intelligent medical image processing systems
because it can improve segmentation results. There
are many factors that impair the segmentation of
skin lesions, including hair, blood vessels, uneven
tumor borders and frames on the image, air bubbles,
very small lesions, very large lesions, and low
contrast. Preprocessing is designed to reduce the
impact of these factors on the performance of the
model. The preprocessing operations are listed
below.

1. Downsampling. Dermatoscopic images are
usually high resolution, i.e., large image size. Most
convolutional neural network architectures, such as
LeNet, AlexNet, VGG, GoogleNet, and ResNet,
require a fixed input image size (typically 224x224
or 299%x299 pixels). Even CNNs that can process
images of arbitrary size (e.g., fully convolutional
networks) can benefit from downsampling due to
reduced computational complexity.

2. Color space transformation. Most models
expect images in RGB format, but in some cases,
alternative color spaces such as CIELAB, CIELUYV,
and HSV can be used. Often one or more channels
from the transformed space are combined with the
RGB channels to improve class resolution, separate
luminance and chrominance, ensure invariance to
illumination or viewing angle, and remove
highlights.

3. Additional input data. In addition to color
space transformation, modern work often adds task-
specific input data, such as frequency domain
representation using discrete Fourier transforms or
data based on the physics of illumination and skin
imaging.
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4. Contrast enhancement. Insufficient contrast is
one of the main causes of segmentation errors. If the
contrast is insufficient, steps can be taken to pre-
enhance the contrast of the images.

5. Color  Normalization. Variations in
illumination can cause inconsistencies in the
segmentation of skin lesions. This problem can be
addressed by using color normalization.

6. Artifact Removal. Dermatoscopic images
often contain artifacts, the most prominent of which
is hair. Hair can be removed before segmentation.

IV. HYBRID METHOD FOR SOLVING
THE SEGMENTATION PROBLEM

A.  Segment Anything Model

Segment Anything (SAM) is a model for image
segmentation based on Zero-shot learning, which
consists of three components: an image encoder
(Fig. 1), a prompt encoder, and a lightweight mask
decoder (Fig. 2).
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Fig. 1. Architecture of the encoder with Masked
autoencoder [11]
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Fig. 2. Architecture of a lightweight mask decoder [12]

The image encoder generates image embeddings
of size C x H x W. Segment Anything employs a
Masked Autoencoder (MAE) pre-trained Vision
Transformer (ViT-H/16) with windowed attention
(14x14) and four evenly spaced global attention
blocks for high-resolution images. The input
resolution is standardized to 1024x1024 via scaling
and padding, resulting in embeddings of size 64x64.
These embeddings are downsampled using 1x1 and
3x3 convolutions (256 channels), followed by layer
normalization. Computationally expensive
operations are minimized by processing each image
only once, enabling real-time query handling.

The Prompt Encoder transforms user inputs
(prompts) into  256-dimensional embeddings,
depending on the type of prompt provided:

e Points: Each point 1is represented by
combining its positional encoding (indicating
location) with a learned embedding that specifies
whether the point belongs to the foreground or
background.

e Boxes: A rectangular box is represented by
two embeddings:

1. The positional encoding of the top-left
corner, combined with a learned embedding for the
top-left corner.

2. Similarly, the positional encoding of the
bottom-right corner combined with a learned
embedding for the bottom-right corner.

e Dense Prompts (e.g., masks): Dense inputs
such as masks are first resized to be one-sixteenth
the resolution of the input image. This is done using
two 2x%2 convolutions with stride 2, which
progressively reduce spatial dimensions. The output
channels of these convolutions are 4 and 16,
respectively. The embeddings are then further
processed using a 1x1 convolution to produce a 256-
dimensional mask embedding.

If no mask is provided, a learned embedding is
added to the image embeddings to indicate the
absence of a mask. When text prompts are used, a
CLIP-based text encoder is employed, though the
approach supports the use of other text encoders as
well [13]. This structured process ensures that all
prompt types are effectively transformed into a
unified embedding space, allowing them to interact
seamlessly with the image embeddings in
subsequent model components.

The decoder translates images and prompt
embeddings into output masks, inspired by
Transformer-based segmentation models. It modifies
a standard Transformer decoder with learned output
tokens.

Each decoder layer performs 4 steps: self-
attention for tokens, cross-attention from tokens (as
queries) to image embedding, point-wise Multi-
Layer Perceptron (MLP) update of each token, and
cross-attention from image embedding (as queries)
to tokens.

The decoder has two layers, scaling the image
embeddings by 4x wusing two transposed
convolutions. Final mask prediction involves an
element-wise  product of upsampled image
embeddings and the MLP output from updated
tokens. The Transformer embedding size is 256,
with MLPs having an internal dimension of 2048.
Cross-attention layers reduce channel dimensions to
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128 for efficiency. Attention layers use eight heads.
Transposed convolutions for upsampling have 2x2
kernels, strides of 2, and output channels of 64 and
32, with GELU activations and layer normalization.

B. Model YOLOvI I

The You Look Only Once (YOLO) framework
(Fig. 3) revolutionized the object detection problem
by introducing a unified neural network architecture
that simultaneously performs bounding box
regression and object classification.

Backbone Neck

The YOLO architecture
fundamental components:

1) Backbone: a core feature extractor that uses
convolutional neural networks (CNN) to transform
raw data (images) into multi-scale feature maps.

2) Neck: an intermediate processing stage that
uses specialized layers to aggregate and improve
feature representation at different scales.

3) Head component: a prediction engine that
generates final results for object localization and
classification based on improved feature maps.
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Head

aoe0x{min(s12,mceu)

20Ka0u|min(3024, mejow]

[:L
C‘D
C]

BaxB0K|min(256,mepow)

Fig. 3. YOLOv11 Architecture [14]

C.  Architecture of the proposed model

The proposed architecture combines YOLOvI11
and SAM into a single model (Fig. 4).

The role of YOLOV11 is to identify objects in the
photo, i.e. malignant skin tumors. Malignant tumors
are regions of interest, which as a result of
YOLOvV11 work become defined in the photo and
are surrounded by a bounding box.
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Fig. 4. Architecture of the proposed model
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The SAM model in Fig. 1, and Fig. 2, contains an
image encoder, a prompt encoder, and a mask
decoder. The image and bounding boxes from
YOLOvVI1 are passed to the input of the SAM
model, which accepts the frame as a prompt. Thanks
to this, SAM “understands” which part of the image
should be segmented and performs tumor
segmentation. Thus, the model performs the task of
medical image segmentation using Zero-shot
learning. To improve the results, YOLOv1l was
fine-tuned (SAM was frozen), and then SAM (mask
decoder) was fine-tuned.

V. ANALYSIS OF THE OBTAINED RESULTS

A comparison of the results is given in Table I.

Model 1 is a variant of the proposed model in
which YOLOvV11 fine-tuning was performed for 100
epochs on 80% of the dataset.

Model 2 is a variant of the proposed model in
which YOLOv11 fine-tuning was performed for 100
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epochs on 80% of the dataset and SAM fine-tuning
was performed for 100 epochs on 80% of the dataset.
This model used the same weights for YOLOv11 that
were obtained as a result of fine-tuning.

TABLE L. COMPARATIVE TABLE OF MODELS FOR
IMAGE SEGMENTATION OF THE ISIC 2018 DATASET
Model mloU Dice
MedSAM [15] 0.614 0.731
UnSegMedGATc [15] 0.748 0.852
SAM ViT-L BBS5 [16] - 0.872
SamDSK (HSNet) [17] - 0.899
Model 1 0.713 0.757
Model 2 0.898 0.915

A brief description of the models compared is
given below.

1) MedSAM is a SAM-based model trained on a
combined medical image dataset containing 1570263
image-mask pairs from 10 modalities, over 30 cancer
types, and multiple imaging protocols [18].

2) UnSegMedGATc is an unsupervised model
based on pre-trained Dino-ViT [15].

3) SAM VIiT-L BBS5 is a SAM model using
ViT-L and modifying the bounding box size to 5%
of the ground truth bounding box size [16].

4) SamDSK (HSNet) is a model that combines
SAM with domain-specific knowledge using an
iterative approach that includes training the
segmentation model and expanding the annotated
dataset.

VI. CONCLUSIONS

An approach to skin tumor segmentation based
on the integration of YOLOv11 and SAM models is
proposed. The analysis and results demonstrate the
effectiveness of this approach, especially after fine-
tuning the models on the ISIC 2018 dataset. Two
main models were considered:

1) Model 1 — fine-tuning YOLOvII for 100
epochs on 80% of the dataset: Showed limited
segmentation performance, in particular, mloU =
0.713 and Dice = 0.757, indicating insufficient
accuracy in object segmentation due to the lack of
SAM adaptation.

2) Model 2 — fine-tuning YOLOvI1 and SAM for
100 epochs on the same data: Significantly
outperforms Model 1 in all key metrics, achieving
mloU = 0.898 and Dice = 0.915. This highlights the
importance of adapting SAM to the specifics of ISIC
2018 data, which significantly improved the quality
of segmentation.

The second model demonstrated competitive
results compared to other approaches, outperforming
them in terms of mloU and Dice metrics
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