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Abstract—This paper analyzes the effectiveness of the developed voice control system for robotics based on 
MFCC and GMM-SVM under the influence of interference in the communication channel. The system allows 
characterizing individual features of speech signals with their subsequent classification and making a reliable 
decision on the interpretation and execution of voice commands by robotic equipment. The proposed voice 
control system for robotics based on MFCC and GMM-SVM is implemented using the following technologies: 
1) selection of active speech areas by calculating the short-term energy and the number of zero crossings 
between adjacent frames of the speech signal; 2) adaptive wavelet filtering of the speech signal, where it is 
necessary to generate threshold values, which will reduce the impact of additive noise; 3) selection of 
recognition features, which are used as mel-frequency cepstral coefficients; 4) classification of recognition 
features based on mixtures of Gaussian distributions and the support vector method using the linear Campbell 
kernel and the principal component method with a projection on latent structures, which will reduce errors of 
the 1st and 2nd kind. 
Index Terms—Speech signals; voice control; adaptive wavelet filtering; mel-frequency cepstral 
coefficients; mixtures of Gaussian distributions; support vector method; communication channel; 
nonlinear distortion coefficient. 

I. INTRODUCTION 

Today, robotics is one of the most promising 
areas of science and technology development. Robots 
no longer only perform simple actions but can also 
replace humans in complex and dangerous tasks. 
However, in order for robots to perform their tasks as 
efficiently as possible, it is necessary to provide a 
convenient and intuitive control interface [1]. 

For humans, the most natural way to interact with 
robotic technology is through speech, namely 
through voice commands, which is one of the most 
common interfaces for controlling robots. Their use 
provides quick and easy access to robot control 
without the need for physical contact with the 
control device. Currently, voice interfaces are used 
in various fields, including manufacturing, medicine, 
education, and home use [2]. 

As technology advances, the use of voice-
activated robots will expand, improving efficiency, 
safety, and quality of life in many sectors. Thus, it is 
expected that the future of robotics will become 
more promising with the advent of human 
interaction with robotic technology through speech 
signals [3]. 

Although the achievements in the field of voice-
activated robotics are impressive, a number of 
scientific and technical challenges still need to be 
addressed, namely, to develop a voice control 
system for robotics that could provide a high 

percentage of error-free recognition and 
classification of speech signals under the influence 
of external noise and interference in the 
communication channel and a small delay in 
processing and transmitting information for fast real-
time operation of the system. These aspects require 
the development and implementation of modern 
methods for: 1) processing, encoding and 
recognition of speech signals [4]; 2) adaptive 
filtering [5]; 3) classification using machine learning 
algorithms and neural networks; taking into account 
the balance between the mathematical complexity of 
calculations and the speed of this type of system, 
which will affect the overall performance of the 
system in a real environment [6]. 

It is with these aspects in mind that the authors of 
this article have proposed a balanced voice control 
system for robotics in a noisy environment, which 
will be explained in detail in Section 3. 

II. LITERATURE REVIEW AND PROBLEM 
STATEMENT 

Despite their widespread use and the above 
advantages, existing voice control systems for 
robotics have a number of serious drawbacks, which 
this research article aims to analyze [7]. 

These include, first of all, the low resolution of 
speech signal recognition methods and a significant 
percentage of errors of both the first kind (mistakenly 
rejected voice commands that have a negative 
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classification result but are authentic) and the most 
dangerous second kind (voice commands that are 
mistakenly considered correctly classified but are not 
authentic). The situation is especially complicated by 
the recognition and classification of speech signals in 
real conditions, accompanied by a set of unfavorable 
external factors that will directly affect the efficiency 
of the robotics voice control system [8]. 

A voice control system for robotics operating in 
real-world conditions faces the following serious 
challenges. Firstly, this classification of speech 
signals causes all sorts of hardware distortions and 
interference due to the peculiarities of equipment and 
devices for recording, processing and storing 
information. Secondly, external acoustic noise 
inevitably superimposes on the speech signal, which 
can significantly distort individual informative 
characteristics. In view of this, voice control systems 

for robotics, which have demonstrated quite high 
efficiency in laboratory conditions, may show much 
lower reliability when analyzing speech information 
with external noise. Finally, in a number of tasks, 
classification has to be performed under very difficult 
conditions of overlapping voices of several speakers, 
in particular, with similar acoustic characteristics. It 
should be noted that there have been virtually no 
studies of speech signal classification capabilities for 
this most difficult case [9]. 

Typically, distortion of speech signals is 
associated with the speaker, environmental noise, 
distortion of the microphone system (including 
electromagnetic interference), distortion arising in 
the recording channel and in the communication 
channel during the transmission of the speech signal, 
as well as distortion during its processing by special 
software (Fig. 1) [10]. 

Speech 
signal Microphone ADC Communication 

channel+ + +
Speech 

recognition

Noise Noise Noise

Microphone 
distortion ADC distortion Distortion of the 

communication 
channelTRANSMITTER RECEIVER  

Fig. 1. The effect of noise and interference on different parts of the speech signal

Thus, speech signal processing involves a set of 
technical, algorithmic, and mathematical methods 
that cover all stages, from voice recording to voice 
data classification. The discussed difficulties and 
shortcomings lead to the conclusion that further 
development of voice control systems for robotics 
requires the development of new approaches aimed 
at processing large amounts of experimental data, 
their effective analysis, and reliable classification. 
This indicates the relevance of research on the 
development of new mathematical methods for 
processing, analyzing and classifying speech signals 
that would ensure the reliability and accuracy of 
voice command classification under the influence of 
noise and interference in the communication channel 
of information and telecommunication networks. 
This study is aimed at analyzing and solving the 
above scientific problems [11]. 

III. PROPOSED SYSTEM 

The proposed voice control system for robotics 
has two modes of operation: learning mode and 
recognition mode. These modes are included in the 
block diagram of the voice control system for 
robotics (Fig. 2), whose task is to perform the 

following steps: 1) dividing the speech signal into 
time frames and selecting areas of active speech 
with finding the values of the change in short-term 
energy and the number of zero crossings between 
adjacent frames of the speech signal (Short-Time 
Energy and Zero-Crossing Rate, STE-ZCR) [12]; 
2) adaptive wavelet filtering of the speech signal 
(Adaptive Wavelet Thresholding, AWT). Adaptive 
Wavelet Thresholding (AWT) to solve the problem 
of noise removal, where it is necessary to conduct 
adaptive generation of microlocal thresholds, which 
will reduce the impact of additive noise on the pure 
form of the speech signal and the selection of 
recognition features, where mel-frequency cepstral 
coefficients (MFCC) are used as informative 
recognition features in the voice control of robotics 
[13]. The classification of MFCC recognition 
features is based on mixtures of Gaussian 
distributions and the Gaussian Mixture Model and 
Support Vector Machine (GMM-SVM) using the 
Campbell linear kernel and the principal component 
method with a projection on latent structures, which 
together will increase the reliability of classification, 
which is manifested in the reduction of errors of the 
1st and 2nd kind [14]. 
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Fig. 2. Block diagram of the robotics voice control system based on MFCC and GMM-SVM

The frame duration of a speech signal should be 
small enough to allow the sequence of frames to 
accurately reflect the short-term dynamics of its 
change, and large enough to allow the sequence of 
frames to accurately reflect its long-term dynamics. 
According to the conditions for selecting the frame 
duration of a speech signal, its frame duration must 
be not less than the period of the fundamental tone 

FT  1 /   10FTT f   ms, where FT  100f   Hz is the 
frequency of the fundamental tone [15]. 

The next step is to consider the algorithm for 
dividing the speech signal into vocalized and non-
vocalized segments and segments of silence (pause). 
This algorithm is based on the assumption that the 
speech signal is a non-stationary process with 
significant changes in the short-term energy and the 
number of zero-crossings between adjacent frames 
(Short-Time Energy and Zero-Crossing Rate, STE-
ZCR) [16]. 

The algorithm contains 7 blocks. 
Block 1. Input speech signal  x m , 0, 1m N  . 
Block 2. Splitting the speech signal into 16 ms 

frames. 
Block 3. Calculation of the values of short-term 

energy nE  and the number of zero crossings nZ  of 
the nth frame. For example, the short-term energy is 

equal to 2

1
( ),

n

n
m n N

E x m
  

   where n is the frame 

number; 0,n L ; L  is the number of frames; 
  M LN  is the number of samples of the speech 

signal. 
The short-term function of the average number of 

zero crossings, or zero intersections, is to compare 
the signs of neighboring counts. For example, 

| sgn( ( )) sgn( ( 1)) | ( ),n
m

z x m x m n m




      

where 
1 0 1,2,( )

0,

m N
W m

    


 and 

1, ( ) 0,
sgn( ( ))

1, ( ) 0,
X m

X m
X m


  

 is a sign function. 

Blocks 4, 6. Setting thresholds thrE  and thrZ  for 

nE  and nZ . 
Block 5. Checking the fulfillment of the condition 

 tn hrE E ?: yes is the nth frame belongs to the 
silence segment; no is to block 7. 

Block 7. Check if the condition  tn hrZ Z ? is 
met: yes is the nth frame belongs to a vocalized 
segment; no is the nth frame belongs to a non-
vocalized segment. 

To reduce errors in deciding whether an area is 
vocalized, it is proposed to use the following ratio 

rms
rms

n

ER
Z

 , 

where 
2 2

1

1( ) ( )
N

rms
m

E x m x m
N 

    is the root 

mean square value of the speech signal. 
Vocalized speech is characterized by a large rmsE  

and a small nZ , and non-vocalized speech is 
characterized by a small rmsE  and a large nZ , so it is 
fair to say that rmsR  is large for a vocalized frame 
and small for a non-vocalized frame. 
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The next step is to perform Adaptive Wavelet 
Thresholding (AWT) on the speech signal to 
eliminate the influence of noise on speech 
recognition. In this case, a set of coupled mirror 
filters decomposes the signal in a discrete domain 
according to an orthogonal wavelet basis  ,j m  into 
several frequency bands [17]. 

Let us represent the model of the speech signal 
 ƒ t  distorted by additive noise as  

( ) ( ) ( )ƒX t t t   . 

Then, when such a signal is decomposed by a set 
of conjugate mirror filters on some discrete 
orthogonal basis  m , gives: 

 [ ] [ ]WX m Wf m W m   . 

Let's introduce a linear operator D  that evaluates 
 Wf m  by  WX m  using the function  md x . The 

resulting evaluation is 


1

0
( [ ])

N

m m
m

F DX d WX m 




  . 

When  md х  is a threshold function, the risk of 
this assessment can be minimized. 

Let ( , )tr x T  be the risk of a threshold estimate 
computed with threshold Т . Then the estimate 

( , )tr x T  of the risk ( , )tr x T  should be calculated 
from the speech signal  X t , which is distorted by 
noise. The value of the threshold Т  in this case is 
optimized by minimizing ( , )tr x T . 

To find the value of T  that minimizes the 
estimate of ( , )tr x T , N  the coefficients of the data 

 WX m  are sorted by decreasing amplitude. Then, 
the wavelet decomposition coefficients ranked in this 
way form an ordered set 1{ [ ]}r

k NWX k   , where any 
[ ] [ ]r

kWX k WX m  is the corresponding coefficient 
of the rank k :    1r rWX k WX k   [18]. 

Let l  be some index such that 
   1r rWX l T WX l   , then we can assume 

  2 2 2 2

1

( , ) ( ) ( ),
N

r
t

k

r f T WX k N l l T


        

where 2  is the variance of the noise component. 
Then to minimize ( , )tr x T , you must choose 

 rT WX l . 

At the next stage of the operation of the voice 
control system for robotics based on MFCC and 
GMM-SVM, it is necessary to consider the 
algorithm for finding MFCC [19]: 

1) The signal  s t , is divided into K  frames by 
N  counts, which intersect by 1/2 the frame length: 
[ ] [ ]ns t S t . 

2) A discrete Fourier transform is performed in 
each frame:  Re [ ], Im [ ] ( [ ])n n nX k X k FFT S i , 
where  1, ,k M  , / 2M N . 

3) Find the power spectral density of the speech 
signal: 

2[ ] [ ]n nP k A k , 2 2[ ] Re [ ] Im [ ]n n nA k X k X k  . 

4) Multiply the samples of the speech signal 
power spectral density by the generated triangular 
filter bank [20] and taking the logarithm of the 
power spectral density of the speech signal: 

1

[ ] ln [ ] [ ] ,  1,......, .
M

n n i
k

X i P k H k i P


   
 
  

5) Perform a discrete cosine transform to the 
logarithmic energy of the speech signal spectrum: 

1

1[ ] [ ]cos ,
2

P

n n
k

C j X k j k
P

       
  

1,....., ,  1,.....,i P j J  , 

where [ ]nC j  is the MFCC array; J  is the desired 
number of coefficients ( J P ). 

The next step is to classify the MFCC speech 
signal features based on GMM-SVM. 

For the input vector x , the density of the 
Gaussian mixture is the weighted sum of М  
components of the mixture, and it is given by 
expression [21]: 

   
1

| ,
M

i i i
i

p x p x


     

where x  is an N-dimensional random vector; 
 ,ір x  1, ,і М   are the components of the 

mixture and i ,  1, .,і М   are the weights of the 
mixture, and each density component is a Gaussian 
function. 

The weights of the components of the mixture 

satisfy the bond: 
1

1
M

i
i

  . 

The GMM is parameterized by a set of 
parameters defined for each i  component of the 
mixture: mean vectors i

 , covariance matrices і  
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and weights i . These parameters are all 
represented by a notation system: 

{ , , },  1,....,і і i i M     
 . 

The goal of training the GMM model is to obtain 
GMM parameters   that give a better fit to the 
experimental distribution of the training vectors 

1{ , ..., }TX x x
  . 

Consider the problem of classification in the 
plane of two non-overlapping classes, in which 
objects are described by n -dimensional real vectors: 

NX R , { 1, 1}Y    . 
Then we define a linear threshold classifier [22]: 

 0 0
1

( ) sign sign , ,
n

j
j

j
Y x w x w w x w



 
    

 
  

where 1 ), ,( nx x x   is the feature description of the 
object X ; vector 1( ,..., ) n

nw w w R   is the scalar 
threshold 0

nw R . Equation  Y x  describes the 
hyperplane that separates classes in space nR  

0,w x w . 
If we assume that the feature descriptions of 

objects are vectors  ix  rather than vectors ix , then 
SVM construction is performed in much the same 
way as before. The only difference is that the scalar 
product ,  x x    in the space X  is replaced by the 
scalar product    ,  x x      in the space H. 

This means that when building an SVM, the 
scalar product ,  x x    can be formally replaced by 
the kernel  ,K x x . Since the kernel is generally 
nonlinear, this replacement leads to a significant 
expansion of the class of valid algorithms a : 
X Y  [23]. 

For example, the Campbell linear kernel is often 
used for GMM-SVM speech signal classification 
systems: 

1 1
2 2

1
( , )

tN
a b a b

lin i i i ii i
i

K s s w w 



      
  

   . 

IV. RESEARCH RESULTS 

To mathematically model the distortion of the 
speech signal in the communication channel, we 
applied an oversampling algorithm based on the use 
of the discrete Fourier transform [24]. 

Let the input speech signal be characterized by a 
finite number of samples  a n . At the first step of 
the algorithm, the coefficients  A k  of the direct 
Fourier transform were calculated:  

2

1

( ) ( ) ,  1,2,...,
kN j n
N

n
A k a n e k N

 



   . 

In the second step, zero components were 
inserted into the area near the sample number / 2N  
of the spectrum, the number of which was set by the 
values of the initial number of samples N  and the 
number of samples in the resampled signal M . 

The coefficients  H i  of the resampled spectrum 
were determined by the following formula: 

1( ) ( ), 1 ,
2

1 1( ) 0, 1 ,
2 2

1( ) ( ), .
2

NH i A i i

N NH i i M N

NH i A i M N M N i M

   
        


       

 

The final step of the algorithm calculated the 
 h m  counts of the inverse discrete Fourier 

transform with normalization:  

2

1

1( ) ( ) , 1, 2, ..., .
kM j m
M

k
h m H k e m M

M
 



    

The nonlinear distortion coefficient K  [25] is 
used as a value that quantitatively characterizes 
distortion: 

2 2

1 1

1 1( ) ( )
L N

l k
K H l A k

L N 

   , 

where ( )H l  is the spectral components of the output 
speech signal that are not present in the spectrum of 
the input speech signal ( )A k , L  is the number of 
spectral components ( )H l . 

In Figure 3 illustrates a segment of the frequency 
spectrum of the input speech signal and the 
corresponding frequency spectrum of the distorted 
speech signal ( 0.8K  ) for the frequency range 
from 0f   Hz to 4000f   Hz, for which the 
distortion was most noticeable. 

 
Fig. 3. Segments of frequency spectra of speech signals: 
1 is spectrum of the input speech signal; 2 is spectrum of 

the distorted speech signal 
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The data obtained in the calculations were 
presented in the form of classification graphs in the 
space of the first principal components (PCs), which 
allow us to clearly interpret the effectiveness of the 
developed voice control system for robotics. 

As a graphical illustration, Fig. 4 shows segments 
of resampled spectra that were subjected to 
distortions corresponding to the coefficients 

0.2;  0.4;  0.6;  0.8K  . 

 
Fig. 4. Segments of resampled speech signal spectra: 1 is 

0K  ; 2 is 0.2K  ; 3 is 0.4K  ; 4 is 0.6K  ; 5 is 
0.8K   

The graph of classification performance 
indicators calculated for the input and distorted 
speech signals is shown in Fig. 5. Here, the input 
speech signals are not represented by filled red dots, 
and the distorted speech signals with different values 
of the distortion coefficient K  are represented by 
green filled dots (point 1 is 0.2K  ; 2 is 0.4K  ; 3 
is 0.6K  ; 4 is 0.8K  ). 

Figure 5 shows that at distortion ratios of 
0.2K   and 0.4K   (points 1 and 2), the speech 

signal was classified correctly. At the coefficients 
0.6K   and 0.8K   (points 3 and 4, located 

outside the ellipse), the positive classification was 
no longer achieved. 

 
Fig. 5. The effect of distortion in the communication 

channel on the classification of speech signals 

V. CONCLUSIONS 

The paper analyzes the effectiveness of the 
developed voice control system for robotics based 
on MFCC and GMM-SVM under the influence of 

interference in the communication channel. The 
system allows characterizing individual features of 
speech signals with their subsequent classification 
and making a reliable decision on the interpretation 
and execution of voice commands by robotic 
equipment. 

The proposed voice control system for robotics 
based on MFCC and GMM-SVM is implemented 
using the following technologies: 1) selection of 
active speech areas with finding the values of the 
change in short-term energy and the number of zero 
crossings between adjacent frames of the speech 
signal; 2) adaptive wavelet filtering of the speech 
signal to solve the problem of noise removal, where 
it is necessary to conduct adaptive generation of 
microlocal thresholds, which will reduce the effect 
of additive noise on the pure form of the speech 
signal; 3) identification of recognition features, 
where fine-frequency cepstral coefficients are used 
as informative features of speech signal recognition 
in robotics voice control; 4) classification of 
recognition features based on mixtures of Gaussian 
distributions and the support vector method using 
the linear Campbell kernel and the principal 
component method with a projection on latent 
structures, which will increase the reliability of 
identification, which is manifested in the reduction 
of errors of the 1st and 2nd kind. 

The influence of the type and magnitude of 
external noise, various interferences and distortions 
on the recognition of speech signals transmitted 
through communication channels of information and 
telecommunication networks for the tasks of voice 
control of robotics is investigated. A methodology is 
proposed that allows classification of speech signals 
under noise by mathematical modeling of distortions 
through the use of a subsampling algorithm. This 
approach is based on the use of a discrete Fourier 
transform and allows increasing the sampling rate of a 
speech signal by a given integer or fractional number 
of times, where the nonlinear distortion coefficient is 
used as a value that quantitatively characterizes the 
distortion. The mathematical modeling of speech 
signal distortion made it possible to quantify the 
magnitude of these distortions, at which the correct 
classification is possible. This shows that the 
proposed approach to assessing the effects of 
distortion can be used to analyze the reliability of 
voice control systems for robotics. 

Thus, the systematic study made it possible to 
identify the effect of external noise on the efficiency 
of the developed voice control system for robotics 
based on MFCC and GMM-SVM under the 
influence of interference in the communication 
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channel, which can be used in the development and 
testing of remote voice interface systems in 
information and telecommunication networks. 
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О. Ю. Лавриненко. Система голосового управління робототехнікою в шумовому середовищі 
У роботі проведено аналіз ефективності розробленої системи голосового управління робототехнікою на основі 
MFCC і GMM-SVM в умовах впливу завад у каналі зв'язку. Система дає змогу характеризувати індивідуальні 
особливості мовних сигналів із подальшою їхньою класифікацією та ухваленням достовірного рішення щодо 
інтерпретації та виконання голосових команд роботизованою технікою. Запропоновану систему голосового 
управління робототехнікою на основі MFCC і GMM-SVM реалізовано за допомогою таких технологій: 1) 
виділення ділянок активної мови за допомогою розрахунку короткочасної енергії та кількості перетинів нуля 
між суміжними кадрами мовного сигналу; 2) адаптивна вейвлет-фільтрації мовного сигналу, де необхідно 
провести генерацію порогових значень, що дасть змогу зменшити вплив адитивного шуму; 3) виділення ознак 
розпізнавання, в якості яких використовуються мел-частотні кепстральні коефіцієнти; 4) класифікація ознак 
розпізнавання на основі сумішей Гауссових розподілів та методу опорних векторів з використанням лінійного 
ядра Кампбелла та методу головних компонент з проекцією на латентні структури, що забезпечить зменшення 
помилок 1-го та 2-го роду. 
Ключові слова: мовні сигнали; голосове управління; адаптивна вейвлет-фільтрація; мел-частотні кепстральні 
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Лавриненко Олександр Юрійович. ORCID 0000-0002-7738-161X. Кандидат технічних наук. Доцент. Доцент 
кафедри телекомунікаційних та радіоелектронних систем. 
Факультет аеронавігації, електроніки та телекомунікацій, Національний авіаційний університет, Київ, Україна. 
Освіта: Національний авіаційний університет, Київ, Україна, (2014). 
Напрямок наукової діяльності: телекомунікаційні системи та мережі, розпізнавання мови, цифрова обробка 
сигналів, захист інформації. 
Кількість публікацій: більше 30. 
E-mail: oleksandrlavrynenko@gmail.com 


