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Abstract—This paper introduces advanced copula-based methods for the nonparametric detection and
characterization of wideband radar signals. The research focuses on developing signal detection
algorithms that are invariant to changes in the probability density function of the sounding or reflected
signals, employing multiscale analysis techniques and copula-based statistics. Two primary approaches
are explored: multiscale analysis using wavelet transforms and rank-based signal detection with copula-
based ambiguity functions. Simulation results confirm the effectiveness of the proposed approaches. The
research demonstrates that integrating rank-based methods with copula-based statistics significantly
improves the detection and analysis of wideband radar signals, particularly in complex scenarios where
signals exhibit intricate dependency structures. This comprehensive detection framework is well-suited
for handling high-dimensional radar signal data, enhancing accuracy and reliability under varied
conditions. Future work will focus on optimizing copula selection and permutation strategies to further

improve performance.

Index Terms—Ambiguity function; rank; copula; detection; radar signal; noise radar.

I. INTRODUCTION

Designing a statistic that is invariant to all
possible changes in the probability density function
(PDF) of the sounding or reflected signals is a
challenging task. In statistical signal processing,
invariance to changes in the PDF typically involves
creating a statistic that depends only on the structure
of the signal rather than its distribution. One
common approach is to use non-parametric methods
or statistics that rely on the ranks of the partial
likelihood ratios [1] rather than their actual values.
Another approach is to use generalization of the
radar ambiguity function, Copula ambiguity
function. The approach has been broadly described
in paper [3].

In this paper it is developed and tested two
approaches to the synthesis of signal detection
algorithms invariant to changes of the probability
density function of the sounding or reflected signals.

The multiscale analysis approach is dealing with
wideband radar signals which often exhibit
characteristics at multiple scales. Also time-varying
nature of wideband signals requires joint time-
frequency analysis. To solve these problems it is
proposed to apply multiscale analysis techniques
(e.g., wavelet transform) to decompose the signals
into different frequency components. And compute

copula-based statistics at each scale to capture more
detailed dependencies between sounding and
reflected signals.

Another approach researched in this paper is
rank-based signal detection algorithms with copula-
based ambiguity function. It is proposed further
development and enhancement of the generalized
copula ambiguity function for better detection and
analysis of wideband radar signals. Developed
algorithms combine the strengths of rank-based
signal detection algorithms with copula-based
ambiguity functions.

It was researched how permutation tests and
partial likelihood ratios used in rank-based methods
can be integrated into copula-based frameworks to
enhance signal detection accuracy under uncertain
conditions.

By using such a rank-based approach, we can
create statistics that are invariant to the underlying
PDF of the signal, focusing instead on the structure
and relative positions of the data points.

II. MULTISCALE ANALYSIS

Wideband  radar  signals  often  exhibit
characteristics at multiple scales. In order to solve this
problem we apply multiscale analysis technique to
decompose the signals into different frequency
components. For capturing more detailed
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dependencies between sounding and reflected signals
we compute copula-based statistics at each scale.

To address the problem of decomposing
wideband radar signals into different frequency
components and analyzing the dependencies
between sounding and reflected signals, we will
follow the next approach.

At first we will do a signal decomposition using
wavelet transform. We apply a wavelet transform to
decompose the wideband radar signals into multiple
scales. This will help to separate the signal into
different frequency components.

Then we will compute copula-based statistics.
At each scale, we compute such statistics to capture
the dependencies between the sounding and
reflected signals. This involves modeling the joint
distribution of the sounding and reflected signals
using copulas and computing measures such as
mutual information or rank correlation [2].

Signal ~ Decomposition  using  Wavelet
Transform. The wavelet transform decomposes a
signal x(f) into different scales. This can be
expressed as:

a

()= Ix(0)w (ﬂ)dt, W

where y(¢) is the mother wavelet; a is the scale

parameter; b is the translation parameter; "
denotes the complex conjugate of v .

For discrete signals, the wavelet decomposition
can be performed using a discrete wavelet transform
(DWT), which results in approximation and detail
coefficients at various levels.

Let x, and x, be the sounding and reflected radar
signals, respectively. Using DWT, we decompose
these signals into approximation A and detail D
coefficients at multiple levels:

AjaDj:DWT(xa\Vaj)a (2)

where j represents the decomposition level.

In our case, for wavelet decomposition, the
signals are decomposed using a Dobechy wavelet
with four vanishing moments (db4) to level five.

Each level represents a different frequency
component of the signal, starting from the low-
frequency approximation (level 0) to the high-
frequency details (higher levels). This multiscale
decomposition allows us to analyze the signals at
various frequency bands.

III. COPULA-BASED APPROACH

Copulas are used to model the dependency
between two random variables. Let # and v be the

marginal distributions of the approximation and
detail coefficients of the sounding and reflected
signals, respectively. The copula C(u,v) captures
the joint distribution of these marginals.

To fit a gaussian copula and compute dependency
measures, we follow these steps:

A)  Computing Rank Transforms
Convert the data to uniform marginals using rank
transforms.

R R
w=—te, =l 3)
n+l n+l1

where R, and R, are the ranks of 4 and D,
respectively, and # is the sample size.

B)  Fitting the Gaussian Copula. (Fig. 1)

The gaussian copula [4] is used to model the joint
distribution of the coefficients from the sounding
and reflected signals at each scale (Figure 1).

The gaussian copula C, (u,u) is defined as:

C,(wv)=0,(07 ()0 (). (@

CDF of the
distribution, @' is its inverse, and @ is the

where @ is standard normal

bivariate normal CDF with correlation parameter p.
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Fig. 1. Gaussian Copula

C)  Compute Kendall's Tau and Spearman's Rho

Kendall's Tau and Spearman's Rho are computed
to measure the dependencies between the signals at
each scale.

These are rank-based measures of dependency:

2 .
T =mzi<j51gn((ui _uj)(oi _Ui))’

2
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where d, =R, —R, 1is the difference between the

ranks.

On Figure 2 it is showed obtained plots of
Kendall's Tau and Spearman's Rho versus the
decomposition scale for the radar signals. The left
plot shows the variation of Kendall's Tau with the
scale. The right plot shows the variation of
Spearman's Rho with the scale.

These plots help visualize the dependencies
between the sounding and reflected signals across
different frequency components, as analyzed
through the wavelet decomposition.
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Fig. 2. The dependency measures variety across different
scales of the wavelet decomposition

The results are obtained to show how the
dependency measures vary across different scales of
the wavelet decomposition.

This approach provides a detailed multiscale
analysis of the dependencies between the sounding
and reflected radar signals, capturing the
relationships at different frequency components.

IV. ESTIMATES

The gaussian copula ambiguity function can be
estimated using kernel estimates [3]. The example of
such function, which is obtained with the help of the
noise acoustic radar, is presented on Fig. 3. The
copula kernel estimate, calculated for the signals of
the acoustic noise radar, which has been obtained
using copula-based approach.

Fig. 3. Kernel Estimate of Gaussian Copula Ambiguity
Function

V. ADVANCED COPULA-BASED AMBIGUITY
FUNCTION

With the help of the noise acoustic radar,
designed and constructed by author [8], the gaussian
copula ambiguity function was measured for real
signals. The acoustic radar sounding signal is a
wideband random signal with a normal distribution.
The signal reflected from the solid object at the
distance equal to 70 m from the radar. The signals
are presented on Fig. 4. For these signals the
ambiguity function (6) and the gaussian copula
ambiguity function (7) were calculated. The results
are presented on Figs 5 and 6.
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Fig. 4. The souding (red) and reflected signal (blue).
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Fig. 5. Kernel estimate of probability density function for
acoustic radar signal

x(tv)= \/MIO(SI (1)—m, )(s2 (v(t-1))-m, )dt,

(6)
where, T is the time delay; v is the Doppler
frequency shift; s, is the original signal; s, is the
reflected signal. Sampling rate f, = 1 MHz.
Distance to object d = 70 m.
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Fig. 6. Kernel Estimate of Gaussian Copula Ambiguity
Function

Distance conversion factor Ad = 0.0038820862
meters per ADC sample. Signal length N = 1000
samples. Maximum delay T,.x = 200 samples.
Maximum Doppler shift vy, = 50 Hz.

2 (%) ZN]‘;(E"‘ (s, (1))~ m, )

(EYZS2 (v(t - ’E)) —-m )dt,

(7

where Es, , ESZ estimates of cumulative distribution

functions

The shape of the the ambiguity function does not
depend on the PDFs of the sounding and reflected
signals [5]. That is why signal detection algorithms,
which are based on this notion, are distribution free.

Figure 6 shows the kernel estimate of the
gaussian copula ambiguity function for the acoustic
radar signal.

A) Generated the Sounding and Reflected Signals

The sounding signal is a wideband random signal
with a normal distribution. The reflected signal is
delayed to simulate a reflection from a solid object
at 70 meters. Performed Wavelet Decomposition:
Decomposed the signals using the Daubechies
wavelet (db4) up to level 5.

B) Converted Data to Uniform Marginals

Transformed the wavelet coefficients to uniform
marginals using the CDF of the normal distribution.

Fitted the Gaussian Copula: used kernel density
estimation to fit the Gaussian copula to the uniform
marginals.

C) Ambiguity Function

Estimate showing the dependencies between the
sounding and reflected signals, capturing their joint
distribution at the selected wavelet decomposition

level. Also it helps to visualize the density function
of the copula.

Figure 7 shows the copula cross-ambiguity
function cross section in the time (distance) domain.
The x-axis represents the distance in meters, and the
y-axis represents the magnitude of the copula
ambiguity function [6].

This cross-correlation function is effectively a
cross-section of the gaussian ambiguity function for
zero velocity of the target. The peak in the correlation
function corresponds to the time delay (and thus the
distance) of the reflected signal, which indicates the
presence of the reflecting object at 70 meters
distance. This visualization helps in understanding
the time (distance) relationship and the correlation
between the original and reflected radar signals.
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Fig. 7. Estimate of the copula cross-ambiguity function
cross section (cross-correlation function) for the acoustic
radar

This plot also effectively shows how the
correlation between the original and reflected radar
signals varies with distance. The peak in the
correlation function indicates the distance to the
reflecting object, which in this case is around
70 meters. This is consistent with the simulated
delay for the reflected signal.

VI. RANK-BASED SIGNAL DETECTION
ALGORITHMS WITH COPULA-BASED AMBIGUITY
FUNCTION

To combine the strengths of rank-based signal
detection algorithms with copula-based ambiguity
functions, we will create a hybrid approach that
leverages the advantages of both methods. This
hybrid approach will involve preprocessing the
signals, performing permutation tests to compute
partial likelihood ratios, fitting copula models to
these ratios, and then combining these components
into a single detection statistic.

To integrate permutation tests and partial
likelihood ratios used in rank-based methods into
copula-based frameworks, we will enhance signal
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detection accuracy under uncertain conditions [7].
Author propose to use integrated approach which
includes the next procedure:

A)  Preprocessing and Rank Transformation

We generate two signals, the sounding signal X
and the reflected signal Y, we preprocess the signals
by transforming them into their rank equivalents.

Let N be the number of samples in each signal:

ranked sounding_signal = M’
- B N+1

rank (X) = ranks of the elements in X,

ranked sounding_signal :M’
N B N+1

rank (Y) = ranks of the elements in Y.

B)  Permutation Tests and Partial Likelihood
Ratios

Permutation tests involves computing likelihood
ratios for permutations of the signal.
For a signal Z with P permutations:

P
H,‘:]ﬂ:i

Likelihood_ratio (1) = ¥ 7 )
inom.pmf (T,1,6

where mis a permutation of Z, p is the mean, and
o is the standard deviation of the permutation [8].

C)  Copula-based Dependency Modeling

Fit a copula model to the partial likelihood ratios
and compute the density function.

Let L be the partial likelihood ratios:

1) Fitacopula Cto L.

2) Compute the copula density f,. for the data L.

D)  Hybrid Detection Statistic

Combine the rank-based statistics with the
copula-based density estimates to form a hybrid
detection statistic.

Ranked signals R, and R,, their

corresponding partial likelihood ratios L, and L, :
1) Combine L, and L, into L,,.
2) Fit a copula to L,, and compute the density

f C (LXY )
3) Compute the rank-based statistic S, as:

| |
Sk =WZLX,. +WZLY,.-
i=lI i=1

4) Compute the hybrid statistic Sy as:

1 N
Sy =58 +ﬁ§ :JC(LXY)'
i=1

and

In order to implement and test proposed approach
the next calculations has been performed:
1) Signal Representation and Preprocessing

X={x1, %2 ..., Xn}.

Rank Transformation: convert the signal values
into ranks.

R(X) = {T], T, ..

2) Copula Modeling

Marginal distribution estimation: estimate the
marginal cumulative distribution functions (CDFs)
Fi, Fy, ..., Fp.

Copula fitting: fit a copula C to the ranked data

Uz{u],u2,...,un}

R)s Fy(5)se s F (1;)-

3) Permutation Test within Copula Framework
Generate permutations: Create m permutations of
the ranked signal R(X):

(R (X).R, (X)....R, (X))},

Compute copula-based ambiguity functions: for
each permutation R;(X), compute the copula-based

3 r"}

where u, = F,(r,), C(F(

i

ambiguity function 4,
4,=A(C,R (X))

Null distribution: Construct the null distribution
of the test statistic 7 from the ambiguity functions of
permutations.

T={4,4,,....4,}

4) Partial Likelihood Ratio Calculation
Compute likelihoods: likelihood under null
hypothesis H, (no signal):

L,=P(U|H,,C).

Likelihood under alternative hypothesis Hi
(signal present):

L =P(U[H,C).
Calculate partial likelihood ratio:

A=t
LO
5) Signal Detection
Compare observed statistic to null distribution:
Calculate the observed copula-based ambiguity

function A4 for the original ranked signal R(X).
Ay, = A(C.R(X)).



64 ISSN 1990-5548

Electronics and Control Systems 2024. N 3(81): 59-66

Determine the p-value by comparing Aus to the
null distribution T.

1o
p—value = ;ZI(A]. > Ay,).

J=1

where /(-) is the indicator function.

Decision rule using partial likelihood ratio: set a
threshold o for the partial likelihood ratio.
Determine signal presence if:

A >a and p —value < 0.05.

The results used, have been obtained with
acoustic radar wideband random signal with a
normal distribution.

Given a ranked signal R(X)={3,1,4,2,5} and a

fitted gaussian copula:
1) Permutations: generate permutations of R(X):

(R (X).R (). R, (X))

2) Ambiguity Functions: compute A4; for each
permutation.

T={4,4,,....4,}
3) Likelihoods: calculate Ly and L,

L,=P(U|H,,C), L =P(U[H,C).

4) Partial Likelihood Ratio:

A=t
L

0

5) Signal Detection:
Ay, = A(C.R(X)),

m

1
p —value = ;ZI(AJ. > Aobs)

Jj=1
Decision: signal present if

A > o and p —value < 0.05.

Figure 8 shows the original signal and its ranked
version. The ranked signal is derived by
transforming the original signal into ranks, which
provides robustness against noise and outliers.

Figure 9 displays the null distribution of the
copula-based ambiguity function values obtained
from the permutations of the ranked signal. The red
dashed line indicates the observed test statistic
computed from the original ranked signal. The p-
value, which represents the probability of observing
such a test statistic under the null hypothesis, is also
shown.
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Fig. 8. The original signal and its ranked version
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Fig. 9. Null distribution of the copula-based ambiguity
function values obtained from the permutations of the
ranked signal

Figure 10 shows the integration of permutation
tests and partial likelihood ratios into a copula-based
framework for signal detection. The histogram
represents the null distribution of the copula-based
ambiguity  function values obtained from
permutations of the ranked signal. The red dashed
line indicates the observed ambiguity function value,
with its associated p-value displayed. Additionally,
the partial likelihood ratio is shown in the plot,
providing further insight into the signal detection
process.
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Fig. 10. Null Distribution of Copula-based Ambiguity
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This visualization demonstrates how the hybrid
approach leverages permutation tests and rank-based
methods within a copula-based framework to
enhance signal detection accuracy under uncertain
conditions.

Lets consider advantages
Integrated Approach.

1) Robustness to Noise and Outliers: Rank-based
methods and permutation tests are inherently robust
to noise and outliers.

2) Modeling Dependencies: Copulas capture
complex dependencies between signal components,
enhancing the accuracy of the detection framework.

3) Non-Parametric  Nature: The combined
approach does not rely on strong parametric
assumptions, making it versatile for various types of
signals and noise conditions.

of the of such

Conclusion and Future research
recommendation.
Integrating  permutation tests and partial

likelihood ratios into copula-based frameworks
creates a powerful hybrid approach for signal
detection. This method combines the robustness of
rank-based methods with the sophisticated
dependency modelling of copulas, providing
enhanced detection accuracy under uncertain
conditions. Future work can focus on optimizing the
copula selection and permutation strategies to
further improve performance.

VII. CONCLUSIONS

In the paper it has been developed and tested two
approaches.

The hybrid approach combines the rank-based
signal detection algorithm's robustness to non-
parametric data with the copula-based ambiguity
function's ability to model dependencies between
signals. By leveraging both methods, we can improve
detection performance, especially in complex
scenarios where signals exhibit intricate dependency
structures. The steps outlined ensure that both
preprocessing and advanced statistical modeling are
integrated into a cohesive detection framework.

The enhanced generalized copula ambiguity
function leverages both rank-based signal detection
and copula-based dependency modeling to improve
the detection and analysis of wideband radar signals.

By combining the robustness of rank-based methods
with the sophisticated dependency modeling of
copulas, this hybrid approach is well-suited for
handling complex, high-dimensional radar signal
data under uncertain conditions. This method
provides a comprehensive framework for signal
detection, enhancing accuracy and reliability.

The effectiveness of the proposed approaches is
confirmed by the simulation results.
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K. M. Bokan. IlokpameHi HenapaMmeTpH4Hi MeTOAU BUSIBJICHHS IHPOKOCMYTOBUX PafioJOKalliilHMX CHTHAJIIB
VY poborti npencraBieHi BAOCKOHAJIEHI HellapaMeTpU4HI METOAM Ha OCHOBI KOITYJI JUIsi BUSIBJICHHS Ta XapaKTEPUCTUKU
IIMPOKOCMYTOBHX pajiojOKalliiHUX CUTHaIB. JOCTiDKEHHS 30CepeKEHO Ha po3poOli aJrOpUTMIB BHUSBICHHS
CUTHAJIB, sIKI € 1HBapiaHTHUMH IO 3MiH y (YHKIII IIUIBHOCTI HMOBIpHOCTI 30HAYBajbHUX a00 BIAOMTHX CHUTHAIIB,
BHUKOPHCTOBYIOYHM METOU OaraTopiBHEBOro aHaJi3y Ta BUKOPHCTAHHS CTaTHCTHK Ha OCHOBI Komyll. Po3risiatoThest 1Ba
OCHOBHI miJxoqu: OaraTopiBHEBWIl aHaJi3 3a JOMOMOIOI0 BEHBIET-NEPETBOPEHb Ta BHSBJICHHS CUTHAJIB Ha OCHOBI
paHriB 3 BHUKOPUCTaHHSM KONYJSPHUX (YHKIIA HEBH3HAYEHOCTi. Pe3ynbTaTH MOJENIOBaHHS IiJTBEPDKYIOTh
€(QEeKTUBHICTh 3alpPOIIOHOBAHUX MiIXOMIB. JOCIiPKEeHHS TEMOHCTpPYE, IO IHTErpalisi METO/iB Ha OCHOBI PaHTiB Ta
CTaTHUCTUK Ha OCHOBI KOMYJl 3HAYHO MOKPAIIye BHUSBJICHHS Ta aHaji3 MIMPOKOCMYTOBUX DPaioNOKAIIHUX CHUTHAIIB,
0cO0JIMBO B CKJIAJHHUX CIIEHAPifX, JIe CUTHAIM MAaloTh CKIAJHI CTPYKTYpHI 3ajexHocTi. Ll xoMIulekcHa cucrema
BUSIBJIEHHS 100p€ MiIXOMUTH JUIsi OOpOOKH OaraToMipHHUX JaHUX PaioOKalliHHUX CUTHAJIIB, ITiABHIIYIOYH TOYHICTh Ta
HAJIMHICTh B PI3HUX YMOBaX.

Koarouogi ciioBa: QyHKIIisI HeBU3HAUEHOCTI; PaHT; KOITyJa; BUSBIICHHSI; palioioKaliiHUI CUTHAIT; ITyMOBUH panap.
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