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Abstract—This paper presents a comparative analysis of two methods for planning and coordinating the
movement of robot manipulators in dynamic environments.: a neural network-based approach for solving
dynamic production scenarios and the rapidly exploring random trees algorithm. The study aims to
enhance the trajectory planning of robot manipulators by leveraging the strengths of intelligent systems.
The neural network method is designed to perceive the environment, generate accurate control
commands, and adapt to changing conditions in real-time. The paper the processes involved in
environmental analysis, collision avoidance, and control signal generation for actuators, with an
emphasis on the neural network architecture tailored for these tasks. The results demonstrate that the
neural network approach offers significant improvements in adaptability and efficiency, providing a
robust solution for optimizing automated processes in dynamic production environments.

Index Terms—Robot manipulators; trajectory planning; neural networks; dynamic environments;
collision avoidance; intelligent control systems; automated processes; real-time adaptation; production

scenarios.
I. INTRODUCTION

At the initial stages of designing a robot
manipulator, it is essential to precisely define the
dynamic model and the related system parameters
for effective controller design [1]. Traditional
control design methods, such as computed torque
control and inverse dynamics control, have proven
effective by calculating the manipulator's torque and
establishing a dynamic equation to achieve
satisfactory control performance [2], [3]. However,
these methods rely on the assumption of an accurate
data model, which can be challenging to obtain
during real-world operation [4].

In many scenarios, robots must adapt to new
conditions or even learn entirely new behaviors. For
instance, a robot involved in car manufacturing may
occasionally need to adapt to new car models. While
it may be feasible to manually program the required
behaviors in some real-world applications, this
approach often falls short when the environment
changes frequently or is unknown in advance to the
engineers.

Modern demands for automated systems
necessitate the development of innovative motion
planning methods to ensure precise and optimal
robot actions in dynamic production environments.
Existing approaches often have limitations, lacking
the flexibility needed to address dynamic production
scenarios. This requirement stems from the dynamic

nature of production environments where robots
must operate.

Incorporating dynamic changes into motion
planning can enhance the accuracy and efficiency of
robots, leading to better task performance, resource
savings, and increased productivity. Additionally,
this approach reduces the risk of collisions, as
improved motion planning significantly lowers the
likelihood of emergencies. Consequently, this will
broaden the scope of robot applications, as the
ability to adapt to dynamic changes will render
robots more versatile, enabling their deployment in a
wider range of tasks.

Therefore, there is a pressing need to develop a
motion planning method that accounts for dynamic
production scenarios. The practical significance of
this research lies in its potential to ensure the safe
and effective use of robots in environments where
they must interact with dynamic surrounding
objects, such as other robots. In recent years,
machine learning has revolutionized robotics and
automation. With the help of algorithms, robots can
now be trained to perform various tasks and even
independently navigate complex environments,
interact more naturally with humans, and carry out
production tasks more efficiently.

Machine learning empowers robots to process vast
amounts of data in real-time, enabling faster and more
accurate decision-making. These robots gain a deeper
understanding of their environment and the objects
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within it. For example, they can be programmed to
identify objects using a combination of visual, tactile,
and auditory sensors, allowing them to recognize
different objects and respond accordingly.

II. ANALYSIS OF THE ROBOT MOVEMENT PLANNING
AND COORDINATION METHOD USING NEURAL
NETWORKS FOR SOLVING DYNAMIC SCENARIOS
AND THE RAPIDLY EXPLORING RANDOM TREES
METHOD

In modern conditions of a rapidly changing
production environment, it is urgent to create
methods of planning and coordinating the movement
of robots that ensure accuracy and adaptability in
real time. This section discusses two approaches to
solving this problem: the use of neural networks for
manipulator motion planning and the Rapidly
Exploring Random Trees (RRT) algorithm.

A)  The method of motion planning using neural
networks

The method of robot movement planning and
coordination using neural networks is based on the
ability of artificial neural networks to learn complex
patterns of behavior based on large volumes of data.
Neural networks, such as convolutional neural
networks (CNN), recurrent neural networks (RNN),
as well as transformers, provide high flexibility and
adaptability to changing environmental conditions [5].

This method allows you to create models that can
not only recognize objects in space, but also track
their movements and changes over time. For
example, the use of CNN provides effective real-
time object recognition, which is key to safe
manipulator motion planning. At the same time,
RNN, LSTM or transformers allow modeling time
dependencies and predicting future states of the
system, which is important for avoiding collisions
and optimal planning of the movement trajectory [6].

Hybrid architectures that combine CNNs with
RNNs, LSTMs, or transforms provide an even
deeper understanding of dynamic scenes, allowing
the system not only to recognize objects, but also to
track their movements and changes over time. This
significantly expands the capabilities of automated
systems and provides flexibility in solving dynamic
production scenarios.

B)  Rapidly RRT method

The rapidly exploring random trees algorithm is
one of the most common methods of trajectory
planning in the space with obstacles. It is based on
the idea of building a tree by randomly exploring the
state space, gradually finding a path from the
starting point to the final point. The main advantage

of the RRT is its ability to efficiently explore large
spaces with complex obstacles [7].

Rapidly exploring random trees is a deterministic
algorithm that allows you to quickly find the motion
trajectory, but it has certain limitations in dynamic
environments. In particular, the algorithm does not
take into account possible changes in the
environment during the movement of the robot,
which can lead to collisions or incorrect trajectory
planning. This limitation makes RRT less suitable
for scenarios where it is important to adapt quickly
to changing conditions [8].

Comparing the two approaches, it can be noted
that the neural network method provides greater
flexibility and adaptability compared to RRT,
especially in dynamic production scenarios. Neural
networks are able not only to plan the trajectory, but
also to quickly adapt it to changes in the
environment, which reduces the risk of collisions
and provides optimal conditions for the operation of
manipulator robots in real time.

On the other hand, RRT remains an effective tool
for rapid trajectory planning in static conditions
where no significant changes in the environment are
expected. This makes it suitable for tasks that do not
require high adaptability, but require a quick and
reliable solution [9].

That is, for dynamic scenarios of the production
environment, neural networks offer a more modern
and flexible approach, while RRT is an effective
method for static or slightly changing conditions.

III. PROBLEM SOLUTION

Training a robot motion planning and
coordination system requires large training samples
and realistic trajectories performed by the robot
control system. This is an expensive process both in
terms of time and resources. Therefore, it is
important to create a realistic simulation
environment that allows you to effectively simulate
the work of robots. Unity3D, developed by Unity
Software, based in the United States of America, is
used to implement such an environment (Fig. 1).

Fig. 1. Examples of using the Unity3D environment for
modeling robot movements using the example
of a manipulator robot
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Unity is used to create realistic datasets and
validate planning results. In particular, the Unity
Robotics Hub contains a standalone programming
system that can integrate with the ROS or Movelt
module. The Unity Robotics Hub module supports
integration with original robot controllers and
provides simulation accuracy to 0.00005 radians and
1% cycle time.

The geometry of the workspace is represented
through 3D polygon mesh models in the modeling
software. Polygon mesh models are exported and
collected as raw data to train a neural network that
represents the dynamic  environment. The
transformation of the 3D obstacle mesh into voxel
models is chosen because of its convenient data
format, which is well suited for analysis and
presentation and can be easily adapted to different
requirements for different robot tasks.

For example, in some high-speed tasks, the robot
must keep a safe distance from obstacles in the
environment. In this case, the size of the voxels
responsible for the obstacles should be increased to
leave enough space between the robot and the
obstacles. At the same time, for tasks that require
delicate operations, such as spot welding, where the
robot must pass through narrow areas, the resolution
of the voxel models must be increased to represent
more detailed elements.

To wvalidate the proposed approach, both
methods, namely the neural network method and the
RRT method, will be tested in the Unity Robotics
Hub virtual environment. The robots will perform
the task of selecting and placing objects in various
environments that contain both static and dynamic
obstacles. It is important to note that although the
environment contains two SCARA robots, motion
planning is only necessary for one robot, while the
other robot is treated as a static or dynamic obstacle.

Unity Robotics Hub motion planners were used
to control the robot. Some robot movements were
generated using high-level motion commands that
were programmed manually. To evaluate the
proposed approach, two robots will perform the task
of picking up and placing objects in different
environments that include static and dynamic
obstacles (Table I). It is important to note that,
despite the presence of two SCARA robots, motion
planning is performed for only one robot, while the
other robot is treated as a static or dynamic obstacle.

Table I shows the static and dynamic interference
in the four different categories of environments. To
evaluate the proposed approach, 100 environments
were created that were not used during training. In
each environment, 20 pairs of start and target
coordinates were randomly generated. The

performance of the proposed approach was
evaluated in terms of validity, trajectory execution
time, and computation time. In an application where
the movements of SCARA robots are planned by
different planners in an offline mode, the validation
was performed only in visual aspects.

TABLE 1. STATIC AND DYNAMIC INTERFERENCE IN
FOUR ENVIRONMENTS
. Static Dynamic
Environment type interference interference
Simple static Robot and a
environments cube
- None
Complex static Robot and
environments 3 cubes
impl mic
Sen\rl)i:ogfnn:nts Cube
c o d i Movable robot
i
omplex dynamic 3 cubes
environments

The robot can move along an incorrectly
generated trajectory, or it can follow the planned
trajectory exactly (Fig. 2).

.%%

Fig. 2. An example of the correct trajectory of the
SCARA robot
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The Figure 2 shows that when the robot precisely
moves along the given trajectory, the other robot,
moving from the right side, crosses the common area
carlier than the one moving from the left side.

After testing in 100 created environments, only 5
trajectories generated by the proposed approach
contain errors (Table II).

Thus, in all scenarios of the experiment, the
average discrepancy between the actual and
predicted execution time of high-level movement
commands is approximately 5%. It is also worth
comparing the interpolation algorithm used to
convert the planned robot movement into high-level
commands, including RRT, with the trajectory
generated by the developed system (Figs 3 — 5). It is
important to note that the runtime of the robot’s
trajectory varies significantly depending on the
distance between the start and end points of the
movement. Thus, for the test cases, it is necessary to
classify distances into three categories: small
distance (less than 30% of the robot’s manipulator
range); medium distance (more than 30% but less
than 60%); and large distance (more than 60%).
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TABLE II. RELATIVE ERRORS OF THE TRAINED MODEL WHEN PREDICTING THE MOVEMENT AND THE EXECUTION
TIME OF THE ACTUAL MOVEMENT
The values of the Average time error when performing a . .
.. Average trajectory prediction error
minimum and movement
maximum possible Point-to-point Linear movement. % Point-to-point Linear
robot speed, % movement, % ’ movement, % movement, %
0-25 2.71 4.4 0.232 0.574
25-50 2.89 5.78 0.473 0.789
50-75 4.38 6.65 0.481 0.862
75-100 6.11 7.17 0.653 0912
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Fig. 3. “angle of joint 1” — change the angle of rotation of the joint; “velocity of joint 1” — change the velocity of the
joint; “acceleration of joint 1” — change the acceleration of the joint
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Fig. 5. “angle of joint 3” — change the angle of rotation of the joint; “velocity of joint 3” — change the velocity of the
joint; “acceleration of joint 3” — change the acceleration of the joint

Thus, it is possible to calculate the execution

51

time of the trajectories generated by the approach
when using robot movement planning and
coordination method using neural networks for
solving dynamic scenarios and RRT (Table III).
Therefore, the movement of the robot planned by
the existing system is significantly different from the
movement proposed by the trajectory planning

system. This is explained by the fact that the RRT
control algorithm used at the planning stage differs
from the control algorithm described in this paper. In
the planning stage, RRT assumes that the joints can
reach their maximum acceleration, while the actual
robot control system uses only 60% and 45% of the
maximum acceleration for the respective robot axes.



52

ISSN 1990-5548 Electronics and Control Systems 2024. N 3(81): 48-53

TABLEIII.  COMPARATIVE TABLE OF THE EXECUTION TIME OF TRAJECTORIES GENERATED BY THE APPROACH WHEN
USING ROBOT MOVEMENT PLANNING AND COORDINATION METHOD USING NEURAL NETWORKS FOR SOLVING DYNAMIC
SCENARIOS AND RRT

Environment Distance between start- Average runtime, ms
point and end-point Proposed approach RRT Improved RRT
Simple static Low 221 212 213
environments Average 422 543 515
High 659 836 694
Complex static Low 291 372 304
environments Average 603 797 663
High 732 904 756
Simple dynamic Low 244 272 277
environments Average 496 581 558
High 734 958 826
Complex dynamic Low 419 462 465
environments A_Verage 765 975 829
High 1071 1294 1113
IV. RESULTS and improving the motion planning system of

In general, developed methods for planning the
movement of manipulators already demonstrate
significant advantages in solving the tasks of avoiding
obstacles and optimizing trajectories. However, to
achieve an even greater level of efficiency and
flexibility, it is worth suggesting several areas of
optimization. For example, tuning hyperparameters of
neural networks. Further research and tuning of
model parameters will allow to achieve an optimal
balance between speed and accuracy.

Optimizing the weights and architecture of the
networks can contribute to improving the training
results and prediction accuracy. The use of deep
reinforcement learning, i.e. DRL, is important. The
application of DRL will allow the operation of the
manipulator to learn in real time, adapting its
strategies to new conditions. This can improve the
robot's ability to quickly adapt to unpredictable
scenarios in a manufacturing environment. There is
also the integration of additional sensors and real data.

Including additional sources of information, such
as additional cameras or sensors, can improve the
perception of the robot's environment and provide a
more accurate model of the working environment. It
is worth paying attention to the improvement of
genetic algorithms. Researching various variants of
genetic algorithms and their adaptation to the
specific requirements of the production process will
allow achieving a greater balance between speed and
the ability to optimize trajectories. In addition,
defining and using clear metrics to measure system
performance will help pinpoint improvements made.

Metrics can include robot speed, accuracy of
predictions, and response time to changes in the
environment. And the definition of opportunities is
the use of quantum computing to optimize large
volumes of calculations related to learning deep
networks and optimizing trajectories. These areas of
improvement are aimed at expanding the capabilities

manipulators, providing them with the ability to
effectively adapt to various conditions of the
production process and constantly increase their
productivity.

V. CONCLUSIONS

Based on the results of this study, there are
several recommendations for practical application in
the field of motion planning of manipulative robots.
First of all, it is recommended to implement the
developed approach in modern production processes
that require autonomy and adaptability in the work
of manipulators. It is important to focus on training
staff to use this technology to optimize work flows.
In addition, it is recommended to conduct other
experiments and research aimed at improving the
efficiency and speed of movement of manipulative
robots in real production conditions. This will allow
to expand the fields of application of the technology
and increase its competitiveness. For practical
implementation, cooperation with manufacturers of
robotic equipment is recommended to integrate the
proposed approach into new and existing
manipulators. This will contribute to increasing the
availability and speed of implementation of this
technology on production lines.
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B. M. Cunernasos, B. II. XousniBcbkuii. IlopiBHSIBHUI aHai3 MeTOAIB NMIaHYBaHHSA Ta KOOpPAMHAaLIl pyxy
podoTa-mMaHiny.sTopa

Y cratTi npeCTaB/IeHO MOPIBHSIIBHIIA aHaII3 IBOX METO/IB IUIAHYBAHHS T KOOP/MHALLT PyXy pOOOTIB-MaHIITy IS TOPIB Y
JTUHAMIYHHUX CepeNOBUINAX: Mi/IXiJ HA OCHOBI HEWPOHHOI MEpEeXi Uil BUPIIICHHS TUHAMIYHUX CLIEHapiiB BUPOOHHIITBA
Ta JITOPUTM MIBUAKOTO IOCITIJDKEHHS BUIAJKOBUX AepeB. JoCnipkeHHsS crpsMoOBaHE Ha TOKpAllleHHS IUIaHyBaHHS
TpaekTopii POOOTIB-MAHIMYJIATOPIB IUIAXOM BHKOPHCTAHHSA CHWIBHUX CTOPIH 1HTENIEKTYaJIbHUX CHCTeM. Metox
HEWPOHHOI MepeKi NPU3HAYCHUH Ui CIPUHHATTS HABKOJHMIIHBOTO CEPEIOBHINA, CTBOPEHHS TOYHHX KOMAaHI
YIIpaBJIiHHS Ta ajianTanii 10 MiHIMBUX YMOB y PeXUMIi peasbHOro yacy. CTaTTs OImicye IpolecH, 1OB’s13aHi 3 aHaIli30M
HaBKOJIMIIHBOTO CEPEIOBUINA, YHUKHEHHSM 31TKHEHb 1 TeHEepalli€lo KepyroUuoro CUTHaIy JUisl IPUBO/IIB, 3 HATOJIOCOM Ha
apxiTeKTypl HEWpOHHOI Mepexi, po3poOiIeHii Uil UX 3aBIaHb. Pe3ynbTaTH JEMOHCTPYIOTH, IIO HEHpOMepeKeBHI
MiXiJ TpPOINOHYE 3HAYHI TOKpAIeHHS B aJalToOBaHOCTI Ta e(EeKTUBHOCTI, 3a0e3nedyroud HaJiifHe pIlleHHS IS
oInTHMi3ali aBTOMaTH30BaHKX IIPOLIECIB Y TUHAMIYHUX BUPOOHUYMX CEPEIOBHIIAX.

Karwu4oBi ciioBa: poOOTH-MaHIMyNsATOpH; IUIAHYBAaHHS TPAEKTOpPii; HEWPOHHI Mepexi; IUHAMIYHE CepeoBHIIE;
YHUKHEHHSI 3ITKHEHHS; IHTEJIEKTYyaJbHi CHCTEMH YIPABIIHHS;, aBTOMAaTHU30BaHI IPOLECH; aJalTalisi B pPEXuMi
peabHOTO Yacy; CIeHapil BUPOOHHIITRA.
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