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Abstract—This paper presents a comparative analysis of two methods for planning and coordinating the 
movement of robot manipulators in dynamic environments: a neural network-based approach for solving 
dynamic production scenarios and the rapidly exploring random trees algorithm. The study aims to 
enhance the trajectory planning of robot manipulators by leveraging the strengths of intelligent systems. 
The neural network method is designed to perceive the environment, generate accurate control 
commands, and adapt to changing conditions in real-time. The paper the processes involved in 
environmental analysis, collision avoidance, and control signal generation for actuators, with an 
emphasis on the neural network architecture tailored for these tasks. The results demonstrate that the 
neural network approach offers significant improvements in adaptability and efficiency, providing a 
robust solution for optimizing automated processes in dynamic production environments. 

Index Terms—Robot manipulators; trajectory planning; neural networks; dynamic environments; 
collision avoidance; intelligent control systems; automated processes; real-time adaptation; production 
scenarios. 

I. INTRODUCTION 

At the initial stages of designing a robot 
manipulator, it is essential to precisely define the 
dynamic model and the related system parameters 
for effective controller design [1]. Traditional 
control design methods, such as computed torque 
control and inverse dynamics control, have proven 
effective by calculating the manipulator's torque and 
establishing a dynamic equation to achieve 
satisfactory control performance [2], [3]. However, 
these methods rely on the assumption of an accurate 
data model, which can be challenging to obtain 
during real-world operation [4]. 

In many scenarios, robots must adapt to new 
conditions or even learn entirely new behaviors. For 
instance, a robot involved in car manufacturing may 
occasionally need to adapt to new car models. While 
it may be feasible to manually program the required 
behaviors in some real-world applications, this 
approach often falls short when the environment 
changes frequently or is unknown in advance to the 
engineers. 

Modern demands for automated systems 
necessitate the development of innovative motion 
planning methods to ensure precise and optimal 
robot actions in dynamic production environments. 
Existing approaches often have limitations, lacking 
the flexibility needed to address dynamic production 
scenarios. This requirement stems from the dynamic 

nature of production environments where robots 
must operate. 

Incorporating dynamic changes into motion 
planning can enhance the accuracy and efficiency of 
robots, leading to better task performance, resource 
savings, and increased productivity. Additionally, 
this approach reduces the risk of collisions, as 
improved motion planning significantly lowers the 
likelihood of emergencies. Consequently, this will 
broaden the scope of robot applications, as the 
ability to adapt to dynamic changes will render 
robots more versatile, enabling their deployment in a 
wider range of tasks. 

Therefore, there is a pressing need to develop a 
motion planning method that accounts for dynamic 
production scenarios. The practical significance of 
this research lies in its potential to ensure the safe 
and effective use of robots in environments where 
they must interact with dynamic surrounding 
objects, such as other robots. In recent years, 
machine learning has revolutionized robotics and 
automation. With the help of algorithms, robots can 
now be trained to perform various tasks and even 
independently navigate complex environments, 
interact more naturally with humans, and carry out 
production tasks more efficiently. 

Machine learning empowers robots to process vast 
amounts of data in real-time, enabling faster and more 
accurate decision-making. These robots gain a deeper 
understanding of their environment and the objects 
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within it. For example, they can be programmed to 
identify objects using a combination of visual, tactile, 
and auditory sensors, allowing them to recognize 
different objects and respond accordingly. 

II. ANALYSIS OF THE ROBOT MOVEMENT PLANNING 
AND COORDINATION METHOD USING NEURAL 

NETWORKS FOR SOLVING DYNAMIC SCENARIOS 
AND THE RAPIDLY EXPLORING RANDOM TREES 

METHOD 

In modern conditions of a rapidly changing 
production environment, it is urgent to create 
methods of planning and coordinating the movement 
of robots that ensure accuracy and adaptability in 
real time. This section discusses two approaches to 
solving this problem: the use of neural networks for 
manipulator motion planning and the Rapidly 
Exploring Random Trees (RRT) algorithm. 

A) The method of motion planning using neural 
networks 

The method of robot movement planning and 
coordination using neural networks is based on the 
ability of artificial neural networks to learn complex 
patterns of behavior based on large volumes of data. 
Neural networks, such as convolutional neural 
networks (CNN), recurrent neural networks (RNN), 
as well as transformers, provide high flexibility and 
adaptability to changing environmental conditions [5]. 

This method allows you to create models that can 
not only recognize objects in space, but also track 
their movements and changes over time. For 
example, the use of CNN provides effective real-
time object recognition, which is key to safe 
manipulator motion planning. At the same time, 
RNN, LSTM or transformers allow modeling time 
dependencies and predicting future states of the 
system, which is important for avoiding collisions 
and optimal planning of the movement trajectory [6]. 

Hybrid architectures that combine CNNs with 
RNNs, LSTMs, or transforms provide an even 
deeper understanding of dynamic scenes, allowing 
the system not only to recognize objects, but also to 
track their movements and changes over time. This 
significantly expands the capabilities of automated 
systems and provides flexibility in solving dynamic 
production scenarios. 

B) Rapidly RRT method 
The rapidly exploring random trees algorithm is 

one of the most common methods of trajectory 
planning in the space with obstacles. It is based on 
the idea of building a tree by randomly exploring the 
state space, gradually finding a path from the 
starting point to the final point. The main advantage 

of the RRT is its ability to efficiently explore large 
spaces with complex obstacles [7]. 

Rapidly exploring random trees is a deterministic 
algorithm that allows you to quickly find the motion 
trajectory, but it has certain limitations in dynamic 
environments. In particular, the algorithm does not 
take into account possible changes in the 
environment during the movement of the robot, 
which can lead to collisions or incorrect trajectory 
planning. This limitation makes RRT less suitable 
for scenarios where it is important to adapt quickly 
to changing conditions [8]. 

Comparing the two approaches, it can be noted 
that the neural network method provides greater 
flexibility and adaptability compared to RRT, 
especially in dynamic production scenarios. Neural 
networks are able not only to plan the trajectory, but 
also to quickly adapt it to changes in the 
environment, which reduces the risk of collisions 
and provides optimal conditions for the operation of 
manipulator robots in real time. 

On the other hand, RRT remains an effective tool 
for rapid trajectory planning in static conditions 
where no significant changes in the environment are 
expected. This makes it suitable for tasks that do not 
require high adaptability, but require a quick and 
reliable solution [9]. 

That is, for dynamic scenarios of the production 
environment, neural networks offer a more modern 
and flexible approach, while RRT is an effective 
method for static or slightly changing conditions.  

III. PROBLEM SOLUTION 

Training a robot motion planning and 
coordination system requires large training samples 
and realistic trajectories performed by the robot 
control system. This is an expensive process both in 
terms of time and resources. Therefore, it is 
important to create a realistic simulation 
environment that allows you to effectively simulate 
the work of robots. Unity3D, developed by Unity 
Software, based in the United States of America, is 
used to implement such an environment (Fig. 1). 

 
Fig. 1. Examples of using the Unity3D environment for 

modeling robot movements using the example  
of a manipulator robot 
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Unity is used to create realistic datasets and 
validate planning results. In particular, the Unity 
Robotics Hub contains a standalone programming 
system that can integrate with the ROS or MoveIt 
module. The Unity Robotics Hub module supports 
integration with original robot controllers and 
provides simulation accuracy to 0.00005 radians and 
1% cycle time. 

The geometry of the workspace is represented 
through 3D polygon mesh models in the modeling 
software. Polygon mesh models are exported and 
collected as raw data to train a neural network that 
represents the dynamic environment. The 
transformation of the 3D obstacle mesh into voxel 
models is chosen because of its convenient data 
format, which is well suited for analysis and 
presentation and can be easily adapted to different 
requirements for different robot tasks. 

For example, in some high-speed tasks, the robot 
must keep a safe distance from obstacles in the 
environment. In this case, the size of the voxels 
responsible for the obstacles should be increased to 
leave enough space between the robot and the 
obstacles. At the same time, for tasks that require 
delicate operations, such as spot welding, where the 
robot must pass through narrow areas, the resolution 
of the voxel models must be increased to represent 
more detailed elements. 

To validate the proposed approach, both 
methods, namely the neural network method and the 
RRT method, will be tested in the Unity Robotics 
Hub virtual environment. The robots will perform 
the task of selecting and placing objects in various 
environments that contain both static and dynamic 
obstacles. It is important to note that although the 
environment contains two SCARA robots, motion 
planning is only necessary for one robot, while the 
other robot is treated as a static or dynamic obstacle. 

Unity Robotics Hub motion planners were used 
to control the robot. Some robot movements were 
generated using high-level motion commands that 
were programmed manually. To evaluate the 
proposed approach, two robots will perform the task 
of picking up and placing objects in different 
environments that include static and dynamic 
obstacles (Table I). It is important to note that, 
despite the presence of two SCARA robots, motion 
planning is performed for only one robot, while the 
other robot is treated as a static or dynamic obstacle. 

Table I shows the static and dynamic interference 
in the four different categories of environments. To 
evaluate the proposed approach, 100 environments 
were created that were not used during training. In 
each environment, 20 pairs of start and target 
coordinates were randomly generated. The 

performance of the proposed approach was 
evaluated in terms of validity, trajectory execution 
time, and computation time. In an application where 
the movements of SCARA robots are planned by 
different planners in an offline mode, the validation 
was performed only in visual aspects. 

TABLE I. STATIC AND DYNAMIC INTERFERENCE IN 
FOUR ENVIRONMENTS 

Environment type Static 
interference 

Dynamic 
interference 

Simple static 
environments 

Robot and a 
cube 

None 
Complex static 
environments 

Robot and 
3 cubes 

Simple dynamic 
environments Cube 

Movable robot 
Complex dynamic 

environments 3 cubes 

The robot can move along an incorrectly 
generated trajectory, or it can follow the planned 
trajectory exactly (Fig. 2). 

 
Fig. 2. An example of the correct trajectory of the 

SCARA robot 

The Figure 2 shows that when the robot precisely 
moves along the given trajectory, the other robot, 
moving from the right side, crosses the common area 
earlier than the one moving from the left side. 

After testing in 100 created environments, only 5 
trajectories generated by the proposed approach 
contain errors (Table II). 

Thus, in all scenarios of the experiment, the 
average discrepancy between the actual and 
predicted execution time of high-level movement 
commands is approximately 5%. It is also worth 
comparing the interpolation algorithm used to 
convert the planned robot movement into high-level 
commands, including RRT, with the trajectory 
generated by the developed system (Figs 3 – 5). It is 
important to note that the runtime of the robot’s 
trajectory varies significantly depending on the 
distance between the start and end points of the 
movement. Thus, for the test cases, it is necessary to 
classify distances into three categories: small 
distance (less than 30% of the robot’s manipulator 
range); medium distance (more than 30% but less 
than 60%); and large distance (more than 60%). 
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TABLE II. RELATIVE ERRORS OF THE TRAINED MODEL WHEN PREDICTING THE MOVEMENT AND THE EXECUTION 
TIME OF THE ACTUAL MOVEMENT 

The values of the 
minimum and 

maximum possible 
robot speed, % 

Average time error when performing a 
movement Average trajectory prediction error 

Point-to-point 
movement, % Linear movement, % Point-to-point 

movement, % 
Linear 

movement, % 
0–25 2.71 4.4 0.232 0.574 

25–50 2.89 5.78 0.473 0.789 
50–75 4.38 6.65 0.481 0.862 
75–100 6.11 7.17 0.653 0.912 

 
Fig. 3. “angle of joint 1” – change the angle of rotation of the joint; “velocity of joint 1” – change the velocity of the 

joint; “acceleration of joint 1” – change the acceleration of the joint 

 
Fig. 4. “angle of joint 2” – change the angle of rotation of the joint; “velocity of joint 2” – change the velocity of the 

joint; “acceleration of joint 2” – change the acceleration of the joint. 

 
Fig. 5. “angle of joint 3” – change the angle of rotation of the joint; “velocity of joint 3” – change the velocity of the 

joint; “acceleration of joint 3” – change the acceleration of the joint 

Thus, it is possible to calculate the execution 
time of the trajectories generated by the approach 
when using robot movement planning and 
coordination method using neural networks for 
solving dynamic scenarios and RRT (Table III). 

Therefore, the movement of the robot planned by 
the existing system is significantly different from the 
movement proposed by the trajectory planning 

system. This is explained by the fact that the RRT 
control algorithm used at the planning stage differs 
from the control algorithm described in this paper. In 
the planning stage, RRT assumes that the joints can 
reach their maximum acceleration, while the actual 
robot control system uses only 60% and 45% of the 
maximum acceleration for the respective robot axes.
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TABLE III. COMPARATIVE TABLE OF THE EXECUTION TIME OF TRAJECTORIES GENERATED BY THE APPROACH WHEN 

USING ROBOT MOVEMENT PLANNING AND COORDINATION METHOD USING NEURAL NETWORKS FOR SOLVING DYNAMIC 
SCENARIOS AND RRT 

Environment Distance between start-
point and end-point 

Average runtime, ms 
Proposed approach RRT Improved RRT 

Simple static 
environments 

Low 221 212 213 
Average 422 543 515 
High 659 836 694 

Complex static 
environments 

Low 291 372 304 
Average 603 797 663 
High 732 904 756 

Simple dynamic 
environments 

Low 244 272 277 
Average 496 581 558 
High 734 958 826 

Complex dynamic 
environments 

Low 419 462 465 
Average 765 975 829 
High 1071 1294 1113 

 

IV. RESULTS 
In general, developed methods for planning the 

movement of manipulators already demonstrate 
significant advantages in solving the tasks of avoiding 
obstacles and optimizing trajectories. However, to 
achieve an even greater level of efficiency and 
flexibility, it is worth suggesting several areas of 
optimization. For example, tuning hyperparameters of 
neural networks. Further research and tuning of 
model parameters will allow to achieve an optimal 
balance between speed and accuracy.  

Optimizing the weights and architecture of the 
networks can contribute to improving the training 
results and prediction accuracy. The use of deep 
reinforcement learning, i.e. DRL, is important. The 
application of DRL will allow the operation of the 
manipulator to learn in real time, adapting its 
strategies to new conditions. This can improve the 
robot's ability to quickly adapt to unpredictable 
scenarios in a manufacturing environment. There is 
also the integration of additional sensors and real data.  

Including additional sources of information, such 
as additional cameras or sensors, can improve the 
perception of the robot's environment and provide a 
more accurate model of the working environment. It 
is worth paying attention to the improvement of 
genetic algorithms. Researching various variants of 
genetic algorithms and their adaptation to the 
specific requirements of the production process will 
allow achieving a greater balance between speed and 
the ability to optimize trajectories. In addition, 
defining and using clear metrics to measure system 
performance will help pinpoint improvements made.  

Metrics can include robot speed, accuracy of 
predictions, and response time to changes in the 
environment. And the definition of opportunities is 
the use of quantum computing to optimize large 
volumes of calculations related to learning deep 
networks and optimizing trajectories. These areas of 
improvement are aimed at expanding the capabilities 

and improving the motion planning system of 
manipulators, providing them with the ability to 
effectively adapt to various conditions of the 
production process and constantly increase their 
productivity. 

V. CONCLUSIONS 
Based on the results of this study, there are 

several recommendations for practical application in 
the field of motion planning of manipulative robots. 
First of all, it is recommended to implement the 
developed approach in modern production processes 
that require autonomy and adaptability in the work 
of manipulators. It is important to focus on training 
staff to use this technology to optimize work flows. 
In addition, it is recommended to conduct other 
experiments and research aimed at improving the 
efficiency and speed of movement of manipulative 
robots in real production conditions. This will allow 
to expand the fields of application of the technology 
and increase its competitiveness. For practical 
implementation, cooperation with manufacturers of 
robotic equipment is recommended to integrate the 
proposed approach into new and existing 
manipulators. This will contribute to increasing the 
availability and speed of implementation of this 
technology on production lines. 
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В. М. Синєглазов, В. П. Хоцянівський. Порівняльний аналіз методів планування та координації руху 
робота-маніпулятора 
У статті представлено порівняльний аналіз двох методів планування та координації руху роботів-маніпуляторів у 
динамічних середовищах: підхід на основі нейронної мережі для вирішення динамічних сценаріїв виробництва 
та алгоритм швидкого дослідження випадкових дерев. Дослідження спрямоване на покращення планування 
траєкторії роботів-маніпуляторів шляхом використання сильних сторін інтелектуальних систем. Метод 
нейронної мережі призначений для сприйняття навколишнього середовища, створення точних команд 
управління та адаптації до мінливих умов у режимі реального часу. Стаття описує процеси, пов’язані з аналізом 
навколишнього середовища, уникненням зіткнень і генерацією керуючого сигналу для приводів, з наголосом на 
архітектурі нейронної мережі, розробленій для цих завдань. Результати демонструють, що нейромережевий 
підхід пропонує значні покращення в адаптованості та ефективності, забезпечуючи надійне рішення для 
оптимізації автоматизованих процесів у динамічних виробничих середовищах. 
Ключові слова: pоботи-маніпулятори; планування траєкторії; нейронні мережі; динамічне середовище; 
уникнення зіткнення; інтелектуальні системи управління; автоматизовані процеси; адаптація в режимі 
реального часу; сценарії виробництва. 
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