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Abstract—This article is devoted to the development of an intelligent mobile system used for
humanitarian demining. At the same time, the problems of detection, localization and storage of the
obtained data are solved. The system operation is based on the use of a synthetic aperture ground
penetrating radar, which makes it possible to detect mines both on the earth's surface and underground.
A quadcopter is used as a carrier. A set of technical means has been developed. The central and graphic
processors are used as a processing unit. Intelligent elements for processing the obtained data are
convolutional neural networks, for machine learning of which a synthetic dataset was used. The data is
organized into S3 segments based on various parameters, such as date, location and sensor type. This
organization facilitates data retrieval and management. Data is encrypted both during transmission and
at rest using AWS Key Management Service to ensure confidentiality.

Index Terms—Synthetic aperture ground penetrating radar; humanitarian demining; quadcopter;
convolutional neural networks; data detection; localization and storage tasks.

I. INTRODUCTION

The field of Synthetic Aperture Radar (SAR)
data processing has experienced significant
advancements in recent years, completely
transforming the way we collect and interpret
information for a wide range of applications. SAR
data, obtained through radar sensors, plays a crucial
role in environmental monitoring, disaster
management, urban planning, and various other
domains. The exceptional capabilities of SAR
technology, including all-weather imaging and high-
resolution data collection, have made it an
invaluable tool for extracting valuable insights from
remote sensing data.

In this comprehensive introduction, we delve into
the fundamental principles of SAR data processing
and its importance in modern applications. We
explore the intricate process of SAR data collection,
storage, processing, and interpretation, shedding
light on the complexities and challenges associated
with harnessing the full potential of SAR
observations. By gaining a deep understanding of
the underlying methodologies and technologies that
drive SAR data processing systems, we can truly
appreciate the transformative impact of SAR
technology on diverse fields.

The chapter takes us through the evolution of
SAR data processing systems, emphasizing the role
of machine learning algorithms, artificial
intelligence techniques, and user interfaces in
enhancing the efficiency and accuracy of data

analysis. We examine the critical role of anomaly
detection in environmental monitoring and disaster
response, highlighting the significance of early
detection and mitigation of potential threats through
advanced SAR data processing methods.

Moreover, we discuss the integration of SAR
data with ground-penetrating radar and GPS
navigation systems, exploring the synergies and
challenges of combining multiple data sources for
comprehensive analysis. The chapter underscores
the importance of user-friendly representations of
SAR data to facilitate decision-making and improve
the accessibility of complex electromagnetic
responses for a wider audience.

Throughout our exploration of SAR data
processing, our objective is to decipher the
complexities of SAR technology, revealing its
immense capacity for innovation and influence
across diverse industries. Through an analysis of the
most recent trends, methodologies, and applications
in SAR data processing, we are committed to forging
a path toward future advancements in remote sensing
technology and data-informed decision-making.

II. SUBSYSTEMS FOR DETERMINING AND SAVING
G-INFORMATION DATA

This subsystem is a critical component of the
intelligent mobile search system, designed to
accurately determine and save geolocation data
(G-information) related to the detection of explosive
devices [1]. The subsystem integrates multiple
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technologies and processes to ensure precise data
collection, processing, and storage.

A.  Data Collection
Synthetic Aperture Radar (SAR) (Fig. 1).
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Fig. 1. Structure scheme of SAR

High-Resolution Imaging: SAR uses radio waves
to create detailed images of the Earth's surface. It
synthesizes a large aperture from multiple
measurements, allowing for high-resolution imaging
regardless of weather conditions.

Surface and Near-Surface Detection: ldeal for
detecting anomalies on the surface and just below
the surface. SAR can penetrate through vegetation,
soil, and other non-metallic objects, making it
effective in diverse environments.

Frequency Bands: Different frequency bands
(e.g., X-band, C-band, L-band) are used to optimize
detection capabilities based on the target and
environmental conditions.

Ground Penetrating Radar (GPR)

Subsurface  Exploration:  GPR  employs
electromagnetic waves to detect objects buried
beneath the ground. It can identify underground
structures and objects at various depths.

Material Differentiation: Capable of
distinguishing between different materials based on
their dielectric properties, which is crucial for
identifying explosive devices hidden underground.

Depth Penetration: The depth of penetration
varies with frequency; lower frequencies penetrate
deeper but offer lower resolution, while higher
frequencies provide better resolution but shallower
penetration.

GPS Integration

Precise Location Tagging: GPS data is used to
geotag detected anomalies, providing accurate
location information. This is essential for mapping
and revisiting detected objects [2].

Real-Time Tracking: Ensures continuous tracking
of both the mobile platform and the detected

explosive devices, aiding in the coordination of
response efforts.

B. Data Processing

Anomaly Detection Algorithms

Machine Learning Models: Utilizes supervised
and unsupervised learning algorithms to identify
patterns and anomalies in the radar data. Training
datasets include various known explosive device
signatures and environmental backgrounds.

Real-Time Analysis: Processes data in real-time
to detect potential threats immediately, allowing for
prompt action.

Multi-Sensor Fusion: Combines data from SAR
and GPR sensors to improve detection accuracy and
reduce false positives. The fusion process considers
the strengths of each sensor type to provide a
comprehensive analysis.

Signal Processing Techniques

Filtering and Noise Reduction: Employs
advanced filtering techniques to eliminate noise and
enhance signal quality. This includes adaptive
filtering, wavelet transforms, and other methods to
extract relevant features [3].

Image Reconstruction: SAR and GPR data are
processed to reconstruct high-quality images,
highlighting potential explosive devices. Techniques
like back-projection and Fourier transforms are used
to achieve this (Fig. 2).
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Fig. 2. Example of 3D simulation result

Feature Extraction: Key features such as shape,
size, and material properties are extracted from the
radar images to aid in identifying explosive devices.

C.  Data Storage and Management

Amazon S3 Integration

Scalability: Amazon Simple Storage Service (S3)
offers scalable storage solutions to handle the large
volumes of data generated by SAR and GPR
sensors. S3's scalability ensures that data storage can
grow as needed without compromising performance.

High Availability: S3's robust infrastructure
guarantees high data availability, ensuring that
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stored information is always accessible for analysis
and retrieval.

Data Redundancy: Amazon S3 replicates data
across multiple locations to prevent data loss and
ensure durability. This redundancy is crucial for
maintaining the integrity of critical detection data [4].

D.  Data Security

Encryption: All data stored in Amazon S3 is
encrypted both in transit and at rest using AWS Key
Management Service (KMS). This ensures that
sensitive data related to explosive device detection is
protected from unauthorized access.

Access Control: Implements stringent access
control policies using AWS Identity and Access
Management (IAM). Access to the stored data is
restricted to authorized personnel only, ensuring data
security and compliance with regulatory standards.

Audit Logs: Maintains detailed logs of all data
access and modifications, enabling traceability and
accountability.

E. Data Management Practices

Automated  Data  Upload: The  system
automatically uploads collected radar and GPS data
to Amazon S3 in real-time or at scheduled intervals.
This ensures that the data is promptly available for
analysis.

Bucket Organization: Data is organized into S3
buckets based on parameters such as collection date,
location, and sensor type. This organization facilitates
easy retrieval and management of the data [5].

Lifecycle Policies: Implements lifecycle policies
to manage data storage costs and ensure compliance
with data retention requirements. These policies
automatically transition data between different
storage classes and delete data that is no longer
needed.

By integrating advanced radar technologies,
GPS, and secure data storage solutions, the
subsystem for determining and saving G-information
data significantly enhances the capabilities of the
intelligent =~ mobile  search  system.  This
comprehensive approach ensures accurate detection,
precise location tagging, and secure management of
data related to explosive devices.

III. STRUCTURE OF SYSTEM FOR DETERMINING
THE POSITION OF EXPLOSIVE DEVICES

The structure of the intelligent mobile search
system for determining the position of explosive
devices is designed to integrate various hardware
and software components seamlessly. This
integration ensures accurate detection, precise

localization, and effective response to potential
threats.

A. Hardware Components

Radar Sensors

Synthetic Aperture Radar (SAR): SAR sensors
are mounted on mobile platforms such as unmanned
aerial vehicles (UAVs), ground vehicles, or
handheld devices. These sensors collect high-
resolution images of the surface and near-surface
areas to detect anomalies that may indicate the
presence of explosive devices [6].

Ground Penetrating Radar (GPR): GPR sensors
are also mounted on mobile platforms, providing
subsurface exploration capabilities. These sensors
emit electromagnetic waves and analyze the
reflected signals to identify buried objects.

GPS Receivers

High-Precision GPS: The system uses high-
precision GPS receivers to provide accurate
geolocation data. This ensures that the position of
detected anomalies can be precisely mapped and
recorded [7].

Real-Time Tracking: GPS receivers enable real-
time tracking of the mobile platform and the
detected objects, facilitating efficient coordination
during search and detection operations.

Mobile Platforms
Unmanned Aerial Vehicles (UAVs): UAVs equipped
with SAR and GPR sensors provide aerial
surveillance and detection capabilities. They can
cover large areas quickly and access difficult-to-
reach locations.

Ground Vehicles: Ground vehicles equipped with
radar sensors and GPS receivers are used for
detailed exploration of specific areas. They offer
stability and can carry heavier sensor payloads.

Handheld Devices: Portable handheld devices
with integrated radar sensors and GPS are used for
on-the-ground inspection and confirmation of
detected anomalies.

B.  Software Components
Data Processing Unit

Central Processing Unit (CPU): The CPU is the
core component that handles all data processing
tasks. It integrates sensor data, processes geolocation
information, and runs machine learning algorithms
to analyze the collected data in real-time.

Graphics Processing Unit (GPU): For intensive
computational tasks such as image processing and
machine learning, GPUs are used to accelerate data
processing and improve system performance.
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Machine Learning Algorithms

Anomaly Detection: Machine learning models are
trained to identify patterns and anomalies in the
radar data. These models use historical data and
known signatures of explosive devices to improve
detection accuracy.

Data Fusion: Algorithms are employed to fuse
data from multiple sensors (SAR, GPR, GPS) to
provide a comprehensive analysis. Data fusion
enhances detection reliability by combining the
strengths of each sensor type.

User Interface (UI)

Real-Time Visualization: The Ul provides real-
time visualization of the collected data, displaying
high-resolution images and geolocation information.
Detected anomalies are highlighted on a map,
allowing operators to quickly assess the situation.

Interactive Controls: The Ul includes interactive
controls for operators to initiate searches, adjust
sensor parameters, and review detected anomalies.
This user-friendly interface ensures that operators
can efficiently manage the detection process.

C. Communication and Data Transfer

Wireless Communication Modules

Secure Data Transmission: Wireless
communication modules ensure real-time data
transfer between the mobile platform and the ground
control station. Secure communication protocols
(e.g., SSL/TLS) are used to protect data integrity and
confidentiality [8].

Low-Latency Networks: The system utilizes low-
latency communication networks to minimize delays
in data transmission, ensuring timely processing and
response.

Ground Control Station

Data Aggregation: The ground control station
aggregates data from multiple mobile platforms,
providing a centralized view of the detection
operations. This centralized approach facilitates
coordinated responses and comprehensive analysis.

Command and Control: Operators at the ground
control station can remotely control the mobile
platforms, adjust sensor settings, and manage data
collection processes. This remote control capability
enhances operational flexibility and safety.

D.  System Workflow

Initiation of Search Operation

Deployment of Mobile Platforms: Mobile
platforms (UAVs, ground vehicles, handheld
devices) are deployed to the target area. Operators
initiate the search operation through the user
interface.

Sensor Activation: Radar sensors (SAR, GPR)
and GPS receivers are activated to start collecting

data. The system continuously monitors the
environment and collects geolocation data.

Data Collection and Processing

Real-Time Data Analysis: Collected data is
transmitted to the data processing unit, where it is
analyzed in real-time using machine learning
algorithms and signal processing techniques.
Anomalies indicating potential explosive devices are
identified and geotagged [9].

Data Fusion and Validation: Data from different
sensors is fused to validate detected anomalies. This
multi-sensor approach reduces false positives and
increases detection reliability.

Alert Generation and Response

Automatic Alerts: When an anomaly is detected,
the system generates automatic alerts, providing
detailed information about the location, size, and
type of the detected object. Alerts are displayed on
the user interface.

Operator Review and Action: Operators review
the detected anomalies and decide on the appropriate
response. This may include deploying additional
resources for further inspection or immediate action
to neutralize the threat [10].

Data Storage and Management

Data Upload to Amazon S3: Processed data,
including radar images and geolocation information,
is automatically uploaded to Amazon S3 for secure
storage. The data is organized and indexed for easy
retrieval.

Long-Term Data Management: Lifecycle policies
and access controls are applied to manage data
retention and ensure compliance with regulatory
requirements. Stored data can be accessed for post-
operation analysis and reporting.

By integrating advanced radar technologies,
precise GPS tracking, and robust data processing
and storage solutions, the system for determining the
position of explosive devices offers a comprehensive
and reliable approach to explosive detection and
response. This structured integration of hardware
and software components ensures that the system
operates efficiently, providing accurate and timely
information to enhance safety and decision-making
processes.

IV. STRUCTURE OF DATA SAVING SUBSYSTEM

This subsystem focuses on the secure and
efficient storage of collected data using Amazon S3
(Fig. 3).

Data Ingestion

Automated  Data  Upload: The  system
automatically uploads collected radar and GPS data
to Amazon S3. This process is initiated once the data
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is collected and processed, ensuring minimal delay

in data availability [11].
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Fig. 3. Structure scheme of AWS

Data Storage

Bucket Organization: Data is organized into S3
buckets based on various parameters such as date,
location, and sensor type. This organization
facilitates easy retrieval and management of the data.

Data Redundancy and Backup: Amazon S3’s
built-in redundancy ensures that data is replicated
across multiple locations, providing high availability
and protection against data loss [12].

Data Security
Access Control: Implements strict access control
policies using AWS Identity and Access

Management (IAM). Only authorized users can
access the stored data (Fig. 4).
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Encryption: Data is encrypted both in transit and
at rest using AWS Key Management Service (KMS)
to ensure data confidentiality. [13]

V. DATABASE DEVELOPMENT

The development of the database involves setting
up a robust structure on Amazon S3 to manage the
collected data efficiently.

Schema Design

Metadata Storage: Includes storing metadata for
each dataset, such as collection time, sensor details,
and location coordinates. This metadata helps in
quick identification and retrieval of relevant data.

Data Indexing: Implements indexing strategies to
optimize data search and retrieval operations.
Indexes are created based on key parameters such as
location and anomaly type [14].

Integration with Data Processing Tools

ETL Processes: Extract, Transform, Load (ETL)
processes are used to integrate data from various
sources into the Amazon S3 database. These
processes ensure that the data is cleaned,
transformed, and loaded into the database in a
structured format [15].

Machine Learning Integration: The stored data is
integrated with machine learning framework.

VI. CONCLUSIONS

Thus, the use of deep reinforcement learning
provides new opportunities for effective
automated control, especially in the face of
changing operating conditions. The introduction
of a reinforcement learning correction
component in stabilisation systems opens up
new horizons for the development of automated
control systems, providing optimal parameters
in the face of uncertainty and dynamic changes.
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B. M. Cunernasos, M. A. Kopajb. InTenekTyasbHa Mo0iibHA MOLIYKOBA cUCTEMA

CTaTTIO MPUCBIYEHO PO3POOJICHHIO IHTENEKTYaJbHOI MOOLIFHOI CHCTEMH, SIKa BUKOPHCTOBYETHCS JUIS T'YMaHITAPHOIO
po3MinyBaHHs. [Ipu 1IbOMY BUPINIYIOTBCS 3aBJaHHS BUSBJICHHS, JIOKaJIi3alli Ta 30epiraHHs OTpUMaHUX JaHuX. Pobora
cHcTeMH 0a3yeThCsi HA BUKOPHCTaHHI reopajapy i3 CHHTE30BaHOIO alepTyporo, IO A€ MOXKIIMBICTh BHSBIIATH MiHH SIK
Ha MOBEPXHi 3eMJIi, TaK i mij 3emJieto. SIk HOCIHf BUKOPHCTOBYEThCS KBaapokonTep. Po3po0ieHo KOMIUIEKC TEeXHIYHUX
3aco0iB. Sk G110k 0OPOOKM BHKOPHCTOBYETHCS LIEHTpANbHUN 1 rpadidauii nporecopu. [HTENEKTyaIbHUMH €JIeMEHTaMU
00pOOKH TAHWX € 3TOPTKOBI HEHPOHHI MEpExKi, Ul MAITMHHOTO HABYAHHS SIKMX BUKOPHUCTOBYBABCS CHHTETUYHHN HaOip
nanux. Jlani opraHi3oBaHi B CerMEHTH S3 Ha OCHOBI pI3HHMX MapaMeTpiB, TAKHUX SK JaTa, MICIIE3HAXOIKEHHS Ta THII
naryrka. Taka opraHizalisi MoJeruye NolyK JaHuX i kepyBaHHs HUMH. JlaHi mmgpyroThes SK MiJ] yac nepeadi, Tax i B
cTaHi crokoro 3a gonomororo AWS Key Management Service 11 3a0e3nedeHHs KOH(IACHIIHOCTI.

Karwu4oBi cioBa: reopazap i3 CHHTE30BaHOIO amepTypolO; TyMaHITaApHE PO3MIHYBAaHHS; KBaJPOKOMNTEP; 3TOPTKOBI
HEWpOHHI Mepexi; 3aBJIaHHs BUSBIICHHS; JIOKaJIi3alil Ta 30epiraHHs JaHuX.
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