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Abstract—This article is devoted to the development of an intelligent mobile system used for 
humanitarian demining. At the same time, the problems of detection, localization and storage of the 
obtained data are solved. The system operation is based on the use of a synthetic aperture ground 
penetrating radar, which makes it possible to detect mines both on the earth's surface and underground. 
A quadcopter is used as a carrier. A set of technical means has been developed. The central and graphic 
processors are used as a processing unit. Intelligent elements for processing the obtained data are 
convolutional neural networks, for machine learning of which a synthetic dataset was used. The data is 
organized into S3 segments based on various parameters, such as date, location and sensor type. This 
organization facilitates data retrieval and management. Data is encrypted both during transmission and 
at rest using AWS Key Management Service to ensure confidentiality.  

Index Terms—Synthetic aperture ground penetrating radar; humanitarian demining; quadcopter; 
convolutional neural networks; data detection; localization and storage tasks. 

I. INTRODUCTION 

The field of Synthetic Aperture Radar (SAR) 
data processing has experienced significant 
advancements in recent years, completely 
transforming the way we collect and interpret 
information for a wide range of applications. SAR 
data, obtained through radar sensors, plays a crucial 
role in environmental monitoring, disaster 
management, urban planning, and various other 
domains. The exceptional capabilities of SAR 
technology, including all-weather imaging and high-
resolution data collection, have made it an 
invaluable tool for extracting valuable insights from 
remote sensing data. 

In this comprehensive introduction, we delve into 
the fundamental principles of SAR data processing 
and its importance in modern applications. We 
explore the intricate process of SAR data collection, 
storage, processing, and interpretation, shedding 
light on the complexities and challenges associated 
with harnessing the full potential of SAR 
observations. By gaining a deep understanding of 
the underlying methodologies and technologies that 
drive SAR data processing systems, we can truly 
appreciate the transformative impact of SAR 
technology on diverse fields. 

The chapter takes us through the evolution of 
SAR data processing systems, emphasizing the role 
of machine learning algorithms, artificial 
intelligence techniques, and user interfaces in 
enhancing the efficiency and accuracy of data 

analysis. We examine the critical role of anomaly 
detection in environmental monitoring and disaster 
response, highlighting the significance of early 
detection and mitigation of potential threats through 
advanced SAR data processing methods. 

Moreover, we discuss the integration of SAR 
data with ground-penetrating radar and GPS 
navigation systems, exploring the synergies and 
challenges of combining multiple data sources for 
comprehensive analysis. The chapter underscores 
the importance of user-friendly representations of 
SAR data to facilitate decision-making and improve 
the accessibility of complex electromagnetic 
responses for a wider audience. 

Throughout our exploration of SAR data 
processing, our objective is to decipher the 
complexities of SAR technology, revealing its 
immense capacity for innovation and influence 
across diverse industries. Through an analysis of the 
most recent trends, methodologies, and applications 
in SAR data processing, we are committed to forging 
a path toward future advancements in remote sensing 
technology and data-informed decision-making. 

II. SUBSYSTEMS FOR DETERMINING AND SAVING 
G-INFORMATION DATA  

This subsystem is a critical component of the 
intelligent mobile search system, designed to 
accurately determine and save geolocation data 
(G-information) related to the detection of explosive 
devices [1]. The subsystem integrates multiple 
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technologies and processes to ensure precise data 
collection, processing, and storage. 

A. Data Collection 
Synthetic Aperture Radar (SAR) (Fig. 1). 

 
Fig. 1. Structure scheme of SAR 

High-Resolution Imaging: SAR uses radio waves 
to create detailed images of the Earth's surface. It 
synthesizes a large aperture from multiple 
measurements, allowing for high-resolution imaging 
regardless of weather conditions. 

Surface and Near-Surface Detection: Ideal for 
detecting anomalies on the surface and just below 
the surface. SAR can penetrate through vegetation, 
soil, and other non-metallic objects, making it 
effective in diverse environments. 

Frequency Bands: Different frequency bands 
(e.g., X-band, C-band, L-band) are used to optimize 
detection capabilities based on the target and 
environmental conditions. 

Ground Penetrating Radar (GPR) 
Subsurface Exploration: GPR employs 

electromagnetic waves to detect objects buried 
beneath the ground. It can identify underground 
structures and objects at various depths. 

Material Differentiation: Capable of 
distinguishing between different materials based on 
their dielectric properties, which is crucial for 
identifying explosive devices hidden underground. 

Depth Penetration: The depth of penetration 
varies with frequency; lower frequencies penetrate 
deeper but offer lower resolution, while higher 
frequencies provide better resolution but shallower 
penetration. 

GPS Integration 
Precise Location Tagging: GPS data is used to 

geotag detected anomalies, providing accurate 
location information. This is essential for mapping 
and revisiting detected objects [2]. 

Real-Time Tracking: Ensures continuous tracking 
of both the mobile platform and the detected 

explosive devices, aiding in the coordination of 
response efforts. 

B. Data Processing 
Anomaly Detection Algorithms 
Machine Learning Models: Utilizes supervised 

and unsupervised learning algorithms to identify 
patterns and anomalies in the radar data. Training 
datasets include various known explosive device 
signatures and environmental backgrounds. 

Real-Time Analysis: Processes data in real-time 
to detect potential threats immediately, allowing for 
prompt action. 

Multi-Sensor Fusion: Combines data from SAR 
and GPR sensors to improve detection accuracy and 
reduce false positives. The fusion process considers 
the strengths of each sensor type to provide a 
comprehensive analysis. 

Signal Processing Techniques 
Filtering and Noise Reduction: Employs 

advanced filtering techniques to eliminate noise and 
enhance signal quality. This includes adaptive 
filtering, wavelet transforms, and other methods to 
extract relevant features [3]. 

Image Reconstruction: SAR and GPR data are 
processed to reconstruct high-quality images, 
highlighting potential explosive devices. Techniques 
like back-projection and Fourier transforms are used 
to achieve this (Fig. 2). 

 
Fig. 2. Example of 3D simulation result 

Feature Extraction: Key features such as shape, 
size, and material properties are extracted from the 
radar images to aid in identifying explosive devices. 

C. Data Storage and Management 
Amazon S3 Integration 
Scalability: Amazon Simple Storage Service (S3) 

offers scalable storage solutions to handle the large 
volumes of data generated by SAR and GPR 
sensors. S3's scalability ensures that data storage can 
grow as needed without compromising performance. 

High Availability: S3's robust infrastructure 
guarantees high data availability, ensuring that 
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stored information is always accessible for analysis 
and retrieval. 

Data Redundancy: Amazon S3 replicates data 
across multiple locations to prevent data loss and 
ensure durability. This redundancy is crucial for 
maintaining the integrity of critical detection data [4]. 

D. Data Security 
Encryption: All data stored in Amazon S3 is 

encrypted both in transit and at rest using AWS Key 
Management Service (KMS). This ensures that 
sensitive data related to explosive device detection is 
protected from unauthorized access. 

Access Control: Implements stringent access 
control policies using AWS Identity and Access 
Management (IAM). Access to the stored data is 
restricted to authorized personnel only, ensuring data 
security and compliance with regulatory standards. 

Audit Logs: Maintains detailed logs of all data 
access and modifications, enabling traceability and 
accountability. 

E. Data Management Practices 
Automated Data Upload: The system 

automatically uploads collected radar and GPS data 
to Amazon S3 in real-time or at scheduled intervals. 
This ensures that the data is promptly available for 
analysis. 

Bucket Organization: Data is organized into S3 
buckets based on parameters such as collection date, 
location, and sensor type. This organization facilitates 
easy retrieval and management of the data [5]. 

Lifecycle Policies: Implements lifecycle policies 
to manage data storage costs and ensure compliance 
with data retention requirements. These policies 
automatically transition data between different 
storage classes and delete data that is no longer 
needed. 

By integrating advanced radar technologies, 
GPS, and secure data storage solutions, the 
subsystem for determining and saving G-information 
data significantly enhances the capabilities of the 
intelligent mobile search system. This 
comprehensive approach ensures accurate detection, 
precise location tagging, and secure management of 
data related to explosive devices. 

III. STRUCTURE OF SYSTEM FOR DETERMINING 
THE POSITION OF EXPLOSIVE DEVICES 

The structure of the intelligent mobile search 
system for determining the position of explosive 
devices is designed to integrate various hardware 
and software components seamlessly. This 
integration ensures accurate detection, precise 

localization, and effective response to potential 
threats. 

A. Hardware Components 
Radar Sensors 
Synthetic Aperture Radar (SAR): SAR sensors 

are mounted on mobile platforms such as unmanned 
aerial vehicles (UAVs), ground vehicles, or 
handheld devices. These sensors collect high-
resolution images of the surface and near-surface 
areas to detect anomalies that may indicate the 
presence of explosive devices [6]. 

Ground Penetrating Radar (GPR): GPR sensors 
are also mounted on mobile platforms, providing 
subsurface exploration capabilities. These sensors 
emit electromagnetic waves and analyze the 
reflected signals to identify buried objects. 

GPS Receivers 
High-Precision GPS: The system uses high-

precision GPS receivers to provide accurate 
geolocation data. This ensures that the position of 
detected anomalies can be precisely mapped and 
recorded [7]. 

Real-Time Tracking: GPS receivers enable real-
time tracking of the mobile platform and the 
detected objects, facilitating efficient coordination 
during search and detection operations. 

Mobile Platforms 
Unmanned Aerial Vehicles (UAVs): UAVs equipped 
with SAR and GPR sensors provide aerial 
surveillance and detection capabilities. They can 
cover large areas quickly and access difficult-to-
reach locations. 

Ground Vehicles: Ground vehicles equipped with 
radar sensors and GPS receivers are used for 
detailed exploration of specific areas. They offer 
stability and can carry heavier sensor payloads. 

Handheld Devices: Portable handheld devices 
with integrated radar sensors and GPS are used for 
on-the-ground inspection and confirmation of 
detected anomalies. 

B. Software Components 
Data Processing Unit 
Central Processing Unit (CPU): The CPU is the 

core component that handles all data processing 
tasks. It integrates sensor data, processes geolocation 
information, and runs machine learning algorithms 
to analyze the collected data in real-time. 

Graphics Processing Unit (GPU): For intensive 
computational tasks such as image processing and 
machine learning, GPUs are used to accelerate data 
processing and improve system performance. 
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Machine Learning Algorithms 
Anomaly Detection: Machine learning models are 

trained to identify patterns and anomalies in the 
radar data. These models use historical data and 
known signatures of explosive devices to improve 
detection accuracy. 

Data Fusion: Algorithms are employed to fuse 
data from multiple sensors (SAR, GPR, GPS) to 
provide a comprehensive analysis. Data fusion 
enhances detection reliability by combining the 
strengths of each sensor type. 

User Interface (UI) 
Real-Time Visualization: The UI provides real-

time visualization of the collected data, displaying 
high-resolution images and geolocation information. 
Detected anomalies are highlighted on a map, 
allowing operators to quickly assess the situation. 

Interactive Controls: The UI includes interactive 
controls for operators to initiate searches, adjust 
sensor parameters, and review detected anomalies. 
This user-friendly interface ensures that operators 
can efficiently manage the detection process. 

C. Communication and Data Transfer 
Wireless Communication Modules 
Secure Data Transmission: Wireless 

communication modules ensure real-time data 
transfer between the mobile platform and the ground 
control station. Secure communication protocols 
(e.g., SSL/TLS) are used to protect data integrity and 
confidentiality [8]. 

Low-Latency Networks: The system utilizes low-
latency communication networks to minimize delays 
in data transmission, ensuring timely processing and 
response. 

Ground Control Station 
Data Aggregation: The ground control station 

aggregates data from multiple mobile platforms, 
providing a centralized view of the detection 
operations. This centralized approach facilitates 
coordinated responses and comprehensive analysis. 

Command and Control: Operators at the ground 
control station can remotely control the mobile 
platforms, adjust sensor settings, and manage data 
collection processes. This remote control capability 
enhances operational flexibility and safety. 

D. System Workflow 
Initiation of Search Operation 
Deployment of Mobile Platforms: Mobile 

platforms (UAVs, ground vehicles, handheld 
devices) are deployed to the target area. Operators 
initiate the search operation through the user 
interface. 

Sensor Activation: Radar sensors (SAR, GPR) 
and GPS receivers are activated to start collecting 

data. The system continuously monitors the 
environment and collects geolocation data. 

Data Collection and Processing 
Real-Time Data Analysis: Collected data is 

transmitted to the data processing unit, where it is 
analyzed in real-time using machine learning 
algorithms and signal processing techniques. 
Anomalies indicating potential explosive devices are 
identified and geotagged [9]. 

Data Fusion and Validation: Data from different 
sensors is fused to validate detected anomalies. This 
multi-sensor approach reduces false positives and 
increases detection reliability. 

Alert Generation and Response 
Automatic Alerts: When an anomaly is detected, 

the system generates automatic alerts, providing 
detailed information about the location, size, and 
type of the detected object. Alerts are displayed on 
the user interface. 

Operator Review and Action: Operators review 
the detected anomalies and decide on the appropriate 
response. This may include deploying additional 
resources for further inspection or immediate action 
to neutralize the threat [10]. 

Data Storage and Management 
Data Upload to Amazon S3: Processed data, 

including radar images and geolocation information, 
is automatically uploaded to Amazon S3 for secure 
storage. The data is organized and indexed for easy 
retrieval. 

Long-Term Data Management: Lifecycle policies 
and access controls are applied to manage data 
retention and ensure compliance with regulatory 
requirements. Stored data can be accessed for post-
operation analysis and reporting. 

By integrating advanced radar technologies, 
precise GPS tracking, and robust data processing 
and storage solutions, the system for determining the 
position of explosive devices offers a comprehensive 
and reliable approach to explosive detection and 
response. This structured integration of hardware 
and software components ensures that the system 
operates efficiently, providing accurate and timely 
information to enhance safety and decision-making 
processes. 

IV. STRUCTURE OF DATA SAVING SUBSYSTEM 

This subsystem focuses on the secure and 
efficient storage of collected data using Amazon S3 
(Fig. 3). 

Data Ingestion 
Automated Data Upload: The system 

automatically uploads collected radar and GPS data 
to Amazon S3. This process is initiated once the data 
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is collected and processed, ensuring minimal delay 
in data availability [11]. 

 
Fig. 3. Structure scheme of AWS 

Data Storage 
Bucket Organization: Data is organized into S3 

buckets based on various parameters such as date, 
location, and sensor type. This organization 
facilitates easy retrieval and management of the data. 

Data Redundancy and Backup: Amazon S3’s 
built-in redundancy ensures that data is replicated 
across multiple locations, providing high availability 
and protection against data loss [12]. 

Data Security 
Access Control: Implements strict access control 

policies using AWS Identity and Access 
Management (IAM). Only authorized users can 
access the stored data (Fig. 4). 

 
Fig. 4. Security structure 

Encryption: Data is encrypted both in transit and 
at rest using AWS Key Management Service (KMS) 
to ensure data confidentiality. [13] 

V. DATABASE DEVELOPMENT 

The development of the database involves setting 
up a robust structure on Amazon S3 to manage the 
collected data efficiently. 

Schema Design 
Metadata Storage: Includes storing metadata for 

each dataset, such as collection time, sensor details, 
and location coordinates. This metadata helps in 
quick identification and retrieval of relevant data. 

Data Indexing: Implements indexing strategies to 
optimize data search and retrieval operations. 
Indexes are created based on key parameters such as 
location and anomaly type [14].  

Integration with Data Processing Tools 
ETL Processes: Extract, Transform, Load (ETL) 

processes are used to integrate data from various 
sources into the Amazon S3 database. These 
processes ensure that the data is cleaned, 
transformed, and loaded into the database in a 
structured format [15]. 

Machine Learning Integration: The stored data is 
integrated with machine learning framework.  

VI. CONCLUSIONS 

Thus, the use of deep reinforcement learning 
provides new opportunities for effective 
automated control, especially in the face of 
changing operating conditions. The introduction 
of a reinforcement learning correction 
component in stabilisation systems opens up 
new horizons for the development of automated 
control systems, providing optimal parameters 
in the face of uncertainty and dynamic changes. 
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В. М. Синєглазов, М. А. Коваль. Інтелектуальна мобільна пошукова система 
Статтю присвячено розробленню інтелектуальної мобільної системи, яка використовується для гуманітарного 
розмінування. При цьому вирішуються завдання виявлення, локалізації та зберігання отриманих даних. Робота 
системи базується на використанні георадару із синтезованою апертурою, що дає можливість виявляти міни як 
на поверхні землі, так і під землею. Як носій використовується квадрокоптер. Розроблено комплекс технічних 
засобів. Як блок обробки використовується центральний і графічний процесори. Інтелектуальними елементами 
обробки даних є згорткові нейронні мережі, для машинного навчання яких використовувався синтетичний набір 
даних. Дані організовані в сегменти S3 на основі різних параметрів, таких як дата, місцезнаходження та тип 
датчика. Така організація полегшує пошук даних і керування ними. Дані шифруються як під час передачі, так і в 
стані спокою за допомогою AWS Key Management Service для забезпечення конфіденційності. 
Ключові слова: георадар із синтезованою апертурою; гуманітарне розмінування; квадрокоптер; згорткові 
нейронні мережі; завдання виявлення; локалізації та зберігання даних. 
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