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Abstract—This article is devoted to the development of a method (algorithm) of medical image 
segmentation based on semi-supervised learning. Semi-supervised learning methods are shown to have 
significant potential for improving medical image segmentation through effective use of unlabeled data. 
However, challenges remain in adapting these methods to the specific characteristics of medical images, 
such as high variability, class imbalance, and the presence of noise and artifacts. To overcome these 
difficulties, it is proposed to integrate several approaches (consistency regularization, pseudo-labeling, 
average teacher model) into a single structure. To increase the robustness and generalizability of the 
model for different imaging methods, we include industry-specific data supplements tailored to the unique 
characteristics and challenges of each method. Large-scale experiments on magnetic resonance imaging, 
computed tomography, and optical coherence tomography datasets demonstrate that the proposed 
framework significantly outperforms fully supervised and individual semisupervised learning methods, 
especially in scenarios with low data labeling. 

Index Terms—Semi-supervised learning; medical image segmentation; consistency regularization; 
pseudo-labeling; mean teacher; deep learning. 

I. INTRODUCTION 
Medical image segmentation is a critical task in 

medical image analysis, serving as a foundation for 
numerous clinical applications such as disease 
diagnosis, treatment planning, and patient 
monitoring. By precisely delineating anatomical 
structures and pathological regions, segmentation 
provides essential information that aids healthcare 
professionals in making informed decisions. For 
example, accurate segmentation of tumors in MRI 
scans can significantly influence surgical planning 
and radiotherapy targeting, directly impacting 
patient outcomes [1]. 

In recent years, deep learning techniques, 
particularly Convolutional Neural Networks (CNNs) 
like the U-Net architecture [2], have revolutionized 
medical image segmentation. These models have 
demonstrated remarkable success due to their ability 
to learn complex hierarchical features from imaging 
data. The encoder-decoder structure with skip 
connections in U-Net enables efficient capture of 
both global context and fine-grained details, leading 
to high-performance segmentation results. However, 
the effectiveness of these models heavily depends on 
large amounts of labeled data. 

Acquiring extensive annotated datasets in the 
medical domain poses significant challenges. The 
annotation process is time-consuming and requires 
specialized expertise from medical professionals 
who must meticulously label images at the pixel or 

voxel level. Moreover, ethical considerations and 
patient privacy concerns often restrict data sharing 
between institutions, further limiting the availability 
of labeled data. This scarcity hinders the training of 
deep learning models and restricts their applicability 
across diverse medical imaging tasks. 

Semi-supervised learning (SSL) offers a 
promising solution to mitigate the reliance on large 
labeled datasets by leveraging unlabeled data, which 
is more abundant. SSL methods aim to enhance 
model performance by incorporating the vast 
amounts of unlabeled data into the training process 
without necessitating proportional increases in 
annotation efforts. While SSL has shown 
considerable success in natural image processing, its 
application to medical image segmentation is less 
explored and presents unique challenges due to the 
specific characteristics of medical imaging data [3], 
such as high intra-class variability, low inter-class 
contrast, and the presence of imaging artifacts. 

In this paper, we propose a comprehensive semi-
supervised segmentation framework tailored to the 
complexities of medical images. Our approach 
integrates multiple SSL techniques-consistency 
regularization, pseudo-labeling, and the Mean 
Teacher model – to effectively harness the 
information present in unlabeled data. Consistency 
regularization encourages the model to produce 
stable predictions under various perturbations of the 
input data, enhancing robustness and generalization. 
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Pseudo-labeling involves generating labels for 
unlabeled data based on high-confidence model 
predictions, which are then used to further train the 
model. The Mean Teacher model maintains an 
exponential moving average of the model weights, 
providing more stable targets and reducing the risk 
of overfitting. 

We enhance the framework with domain-specific 
data augmentations appropriate for different medical 
imaging modalities. Our contributions are: 

1) An integrated SSL framework that combines 
multiple methods to effectively utilize unlabeled 
medical images. 

2) Domain-specific data augmentations to 
improve model robustness and generalization. 

3) Extensive evaluation on diverse medical 
imaging datasets to demonstrate the effectiveness of 
the proposed framework. 

II. PROBLEM STATEMENT 

Developing accurate medical image segmentation 
models is hindered by the limited availability of 
labeled data, as manual annotation is time-consuming 
and requires specialized medical expertise. Deep 
learning models, such as convolutional neural 
networks (CNNs), rely on large labeled datasets to 
achieve high performance. The challenge is to create 
a semi-supervised learning framework that 
effectively leverages unlabeled medical images to 
enhance segmentation accuracy under limited labeled 
data conditions. Specifically, we aim to integrate 
methods like consistency regularization, pseudo-
labeling, and the Mean Teacher model, along with 
domain-specific data augmentations, to address the 
unique complexities of different medical imaging 
modalities and improve the utilization of unlabeled 
data in the training process. 

III. RELATED WORK 

The goal of this article is to build an ensemble of 
neural networks with an optimal architecture for 
classifying data. 

A. Medical Image Segmentation 
Medical image segmentation has undergone 

significant transformation with the advent of deep 
learning techniques, particularly Convolutional 
Neural Networks (CNNs). Before deep learning 
became prevalent, segmentation tasks relied on 
manual delineation by experts or traditional image 
processing methods such as thresholding, region 
growing, and edge detection. These conventional 
approaches often struggled with variability in image 
quality, noise, and complex anatomical structures, 
leading to inconsistent and less accurate results. 

The introduction of CNN-based architectures 
revolutionized medical image segmentation by 
enabling models to learn hierarchical and abstract 
features directly from data. One of the most 
influential architectures is the U-Net [2], proposed 
by Ronneberger et al., which has become a 
foundational model in biomedical image 
segmentation. The U-Net architecture features a 
symmetric encoder-decoder structure with skip 
connections that facilitate the combination of low-
level and high-level feature information. This design 
allows the network to capture both the global 
context and fine-grained details essential for precise 
segmentation. Subsequent adaptations of U-Net have 
been developed to address specific challenges, such 
as 3D U-Net for volumetric data [4], Attention U-
Net incorporating attention mechanisms to focus on 
relevant regions [5], and Residual U-Net integrating 
residual connections to improve training 
convergence [6]. Despite the success of these 
models, they typically require large amounts of 
annotated data to achieve optimal performance, 
which is a significant limitation in the medical 
imaging domain where labeled data is scarce. 

B. Semi-supervised Learning  
Semi-supervised learning (SSL) has emerged as a 

promising approach to mitigate the dependency on 
large labeled datasets by leveraging unlabeled data, 
which is often more readily available. In the context 
of medical imaging, SSL methods aim to enhance 
model performance by extracting meaningful 
information from unlabeled images, thereby 
reducing the burden of manual annotation. Various 
SSL techniques have been explored in medical 
image segmentation, each addressing the unique 
challenges posed by medical data [7]. 

One common SSL approach is consistency 
regularization, which encourages the model to 
produce consistent outputs when inputs are subjected 
to perturbations or augmentations. For instance, Li et 
al. [8] applied transformation-consistent self-
ensembling to cardiac MRI segmentation, where the 
model's predictions remained stable under different 
transformations of the input data. This method 
improved the generalization of the model by making 
it robust to variations commonly encountered in 
medical images. 

Another widely used technique is pseudo-
labeling, where the model generates labels for 
unlabeled data based on its confident predictions. 
Bai et al. [9] utilized pseudo-labeling for semi-
supervised cardiac MR image segmentation, 
iteratively refining the model with newly labeled 
data. This approach effectively expanded the 
training dataset without additional manual 
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annotations, leading to improved segmentation 
accuracy. 

The Mean Teacher model [10], originally 
proposed for natural image classification, has also 
been adapted for medical image segmentation. Perone 
et al. [11] employed a Mean Teacher framework for 
spinal cord gray matter segmentation in MRI scans. 
By maintaining a teacher model as an exponential 
moving average of the student model's weights, they 
achieved more stable and accurate predictions, 
particularly when labeled data was limited. 

In addition to these methods, adversarial learning 
has been explored in SSL for medical imaging. 
Zhang et al. [12] introduced a deep adversarial 
network for biomedical image segmentation, where 
a discriminator network guides the segmentation 
model to produce outputs that are indistinguishable 
from ground truth labels. Although effective, 
adversarial approaches can be complex to train and 
may require careful tuning to achieve convergence. 

Overall, SSL methods have shown significant 
potential in enhancing medical image segmentation 
by effectively utilizing unlabeled data. However, 
challenges remain in adapting these techniques to 
the specific characteristics of medical images, such 
as high variability, class imbalance, and the presence 
of noise and artifacts. Our work builds upon these 
SSL approaches, integrating multiple techniques 
within a unified framework and incorporating 
domain-specific data augmentations to address 
modality-specific challenges. 

IV. METHODOLOGY 

A. Overview 
Our proposed semi-supervised segmentation 

framework integrates multiple SSL techniques-
consistency regularization, pseudo-labeling, and the 
Mean Teacher model – to effectively leverage 
unlabeled medical images. We also incorporate 
domain-specific data augmentations tailored to 
different imaging modalities to enhance model 
robustness and generalization. The overall 
architecture is based on the U-Net model, which is 
well-suited for segmentation tasks due to its 
encoder-decoder structure with skip connections. 

B. Semi-supervised Learning Methods 
1) Consistency Regularization 
We enforce the model to produce consistent 

outputs when the input is subjected to perturbations. 
The unsupervised consistency loss consistL  is defined 
as: 

2
consist ( ) ,( ) ( )

ux DL f x f x        

where Du is the unlabeled dataset; δ represents 
perturbations, and fθ is the model. 

Perturbations include: 
 Spatial Transformations: Random rotations, 

scaling, and elastic deformations. 
 Intensity Transformations: Brightness and 

contrast adjustments, Gaussian noise. 
2) Pseudo-Labeling 
We assign pseudo-labels to unlabeled data based 

on model predictions with high confidence. The 
steps are: 

 Model Prediction: Obtain softmax outputs on 
unlabeled data. 

 Confidence Thresholding: Select predictions 
with confidence above a threshold τ. 

 Label Assignment: Assign pseudo-labels to 
selected predictions. 

 Training Update: Use pseudo-labeled data to 
update the model. 

The pseudo-label loss pseudoL  is calculated using 
cross-entropy between the model's predictions and 
the pseudo-labels. 

3) Mean Teacher Model 
The Mean Teacher model [5] maintains a teacher 

model whose weights are an exponential moving 
average (EMA) of the student model's weights. The 
student model is trained to minimize the difference 
between its predictions and those of the teacher 
model. 

The teacher model provides more stable targets 
for the student model. The consistency loss between 
the student and teacher models is: 

2( ) ( ,)
uMT x DL f x f x      

where θ′ are the teacher model's weights, Du is the 
unlabeled dataset. 

C. Domain-Specific Data Augmentations 
To enhance the model's robustness and 

generalization across different imaging modalities, 
we incorporate domain-specific data augmentations 
tailored to the unique characteristics and challenges 
of each modality. 

For MRI brain scans, we simulate realistic 
variations and artifacts commonly encountered in 
clinical settings. This includes introducing motion 
artifacts to mimic patient movement during 
scanning, adjusting for intensity inhomogeneities 
that result from scanner-related variations, and 
adding Gaussian noise to reflect inherent acquisition 
noise. These augmentations help the model become 
invariant to such variations, improving its ability to 
generalize to new, unseen data. 
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In the case of CT liver images, the augmentations 

focus on addressing variability in contrast levels and 
the presence of pathological features. We adjust 
contrast settings to simulate different phases of 
contrast enhancement, which is critical for liver 
imaging where timing of the contrast agent affects 
image appearance. Synthetic lesions are introduced 
to increase the diversity of pathological cases, 
enabling the model to better detect and segment liver 
lesions. Additionally, simulating metal artifacts, 
such as streaks caused by implants, makes the model 
robust against common imaging artifacts that can 
obscure anatomical details. 

For retinal OCT images, the augmentations aim to 
replicate noise patterns and structural deformations 
typical of OCT imaging. Adding speckle noise mimics 
the characteristic granular appearance of OCT images 
due to the coherent nature of the imaging process. 
Simulating deformations of retinal layers helps the 
model handle anatomical variations and pathological 
changes, such as those caused by macular 
degeneration or edema. Introducing small artifacts 
resembling vitreous floaters addresses common issues 
that degrade image quality, ensuring the model can 
maintain performance despite such challenges. 

By integrating these domain-specific 
augmentations into the training process, the model is 
exposed to a wide range of realistic variations and 
artifacts. This exposure encourages the learning of 
invariant features crucial for accurate segmentation 
across diverse imaging conditions. Consequently, 
the model's robustness and generalizability are 
enhanced, which is essential for reliable 
performance in clinical applications where imaging 
conditions and patient anatomies can vary 
significantly. 

D. Loss Functions 
The total loss L combines supervised and 

unsupervised components: 

supervised consist consist pseudo pseudo .MT MTL L L L L     

where supervisedL  is the dice loss and cross-entropy 
loss on labeled data, λ are the weights for each 
unsupervised loss term, determined empirically. 

E. Training Procedure 
The training involves: 
1) Initialization: Train the student model on 

labeled data. 
2) Unlabeled Data Integration: Incorporate 

unlabeled data using corresponding SSL methods. 
3) Teacher Model Update: Update the teacher 

model's weights using EMA of the student model. 

4) Iterative Optimization: Continue training with 
both labeled and unlabeled data. 

F. Network Architecture 
We employ the U-Net architecture [2] due to its 

effectiveness in biomedical image segmentation. 
The U-Net consists of a contracting path (encoder) 
to capture context and an expansive path (decoder) 
to enable precise localization. Skip connections 
between corresponding layers in the encoder and 
decoder paths allow for the preservation of spatial 
information. 

To accommodate the different characteristics of 
the datasets, we adjust the number of filters and 
layers accordingly. For example, deeper networks 
are used for higher-resolution images to capture 
more complex features. 

V. EXPERIMENTS AND RESULTS 

A. Datasets  
To evaluate the effectiveness of our proposed 

semi-supervised learning framework for medical 
image segmentation, we conducted extensive 
experiments on three publicly available datasets 
representing different imaging modalities: MRI 
brain scans from the BraTS dataset, CT liver images 
from the LiTS dataset, and retinal OCT images from 
the Duke OCT dataset. Each dataset presents unique 
challenges due to variations in imaging techniques, 
anatomical structures, and pathological conditions. 

B. Data Splitting and Preprocessing 
For each dataset, we divided the available data 

into training, validation, and test sets. The training 
set comprised a small portion of labeled data and a 
larger portion of unlabeled data to simulate limited 
annotation scenarios. The validation set was used for 
hyperparameter tuning and early stopping, while the 
test set provided an unbiased evaluation of the 
model’s performance. 

Preprocessing steps were applied to standardize 
the data across samples. Images were resampled to a 
consistent resolution to account for variations in 
voxel size. Intensity normalization was performed to 
adjust for differences in scanner settings and patient-
specific characteristics. For MRI images, skull 
stripping was applied to remove non-brain tissues, 
and for CT images, windowing techniques were 
used to enhance the visibility of liver structures. 

C. Evaluation Metrics 
To quantitatively assess the segmentation 

performance, we employed several widely used 
metrics: 
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 Dice Similarity Coefficient (DSC): Measures 
the overlap between the predicted segmentation and 
the ground truth, ranging from 0 (no overlap) to 1 
(perfect overlap). 

 Hausdorff Distance (HD): Evaluates the 
maximum distance between the boundary points of 
the predicted segmentation and the ground truth, 
indicating the worst-case boundary error. 

 Average Surface Distance (ASD): Computes 
the average distance between the surfaces of the 
predicted segmentation and the ground truth, 
providing a measure of overall boundary accuracy. 

These metrics collectively offer a comprehensive 
evaluation of both the volumetric overlap and the 
boundary accuracy of the segmentation results. 

D. Baseline Models and Comparative Methods 
To demonstrate the effectiveness of our proposed 

framework, we compared its performance against 
several baseline models and existing semi-
supervised learning methods: 

 Fully Supervised Learning (FSL): A model 
trained solely on the labeled data without utilizing 
unlabeled data. 

 Consistency Regularization Only: A semi-
supervised model employing only consistency 
regularization as the SSL method. 

 Pseudo-Labeling Only: A semi-supervised 
model utilizing only pseudo-labeling for leveraging 
unlabeled data. 

 Mean Teacher Only: A model using only the 
Mean Teacher approach for SSL. 

 Combined SSL Methods: Our proposed 
framework integrating consistency regularization, 
pseudo-labeling, and the Mean Teacher model. 

All models shared the same network architecture 
(U-Net) and were trained under identical conditions 
to ensure a fair comparison. 

E. Training Details 
Training was conducted using an NVIDIA GPU 

to handle the computational demands of deep 
learning models. We employed the Adam optimizer 
with an initial learning rate set to 1e-4. Learning rate 
decay strategies, such as cosine annealing, were used 
to improve convergence. The batch size was selected 
based on memory constraints and set to 4 for 3D 
images (MRI and CT) and 16 for 2D images (OCT). 

To balance the supervised and unsupervised loss 
components, we empirically determined the weights 
 MT through cross-validation. Dataߣ ,pseudoߣ ,consistencyߣ
augmentation was applied on-the-fly during training, 
incorporating both general augmentations (e.g., 
flipping, rotation) and the domain-specific 
augmentations described in the methodology. 

Early stopping was implemented based on the 
validation loss to prevent overfitting. The best-
performing model on the validation set was saved 
and later evaluated on the test set. 

The results of the research are presented in 
Tables I – III. 

Table I. TEST SAMPLE RESULTS ON MRI BRAIN SCANS 

Method DSC (%) HD (mm) ASD (mm) 

FSL 75.4 12.3 1.8 

Consistency Regularization Only 78.1 10.9 1.5 

Pseudo-Labeling Only 77.5 11.2 1.6 

Mean Teacher Only 78.8 10.7 1.4 

Proposed Framework 83.2 8.5 1.1 

Table II. TEST SAMPLE RESULTS ON CT LIVER IMAGES 

Method DSC (%) HD (mm) ASD (mm) 

FSL 82.1 9.7 1.6 

Consistency Regularization Only 85.0 8.5 1.3 

Pseudo-Labeling Only 84.6 8.8 1.4 

Mean Teacher Only 85.5 8.2 1.2 

Proposed Framework 88.7 6.4 0.9 
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Table III. TEST SAMPLE RESULTS ON RETINAL OCT IMAGES 

Method DSC (%) HD (mm) ASD (mm) 

FSL 80.3 11.0 1.7 

Consistency Regularization Only 83.0 9.6 1.4 

Pseudo-Labeling Only 82.5 9.8 1.5 

Mean Teacher Only 83.7 9.2 1.3 

Proposed Framework 86.9 7.8 1.0 
 

F. Analysis and Discussion 
Our proposed semi-supervised learning 

framework demonstrated consistent and significant 
performance improvements across all three datasets – 
MRI brain scans, CT liver images, and retinal OCT 
images – compared to both the fully supervised 
baseline and models utilizing individual SSL 
methods. Specifically, the framework increased the 
Dice Similarity Coefficient (DSC) from 75.4% to 
83.2% on MRI brain scans, from 82.1% to 88.7% on 
CT liver images, and from 80.3% to 86.9% on retinal 
OCT images. These enhancements indicate that the 
integrated use of consistency regularization, pseudo-
labeling, and the Mean Teacher model effectively 
leverages unlabeled data to improve segmentation 
accuracy. Additionally, reductions in the Hausdorff 
Distance (HD) and Average Surface Distance (ASD) 
across all datasets reflect improved boundary 
precision and overall segmentation quality.  

The inclusion of domain-specific data 
augmentations further improves the model's 
robustness by exposing it to a variety of realistic 
variations and artifacts. This exposure enables the 
model to learn invariant features that are crucial for 
accurate segmentation across different imaging 
conditions. 

Our framework consistently outperformed the 
baselines across all datasets, indicating its versatility 
and effectiveness across different imaging 
modalities and segmentation tasks. The 
improvements in both overlap measures (DSC) and 
boundary accuracy metrics (HD and ASD) suggest 
that the model not only segments the regions of 
interest more completely but also delineates their 
boundaries more precisely. 

These results have significant implications for 
clinical applications. Improved segmentation 
accuracy can enhance the reliability of computer-
aided diagnosis systems, assist in precise treatment 
planning, and contribute to better patient outcomes. 
By reducing the dependency on large labeled 

datasets, our framework makes it more feasible to 
develop high-performing segmentation models in 
scenarios where annotated data is scarce. 

VI. CONCLUSION 

We presented a semi-supervised segmentation 
framework for medical images that effectively 
leverages unlabeled data by integrating consistency 
regularization, pseudo-labeling, and the Mean 
Teacher model. Domain-specific data augmentations 
further enhance model robustness and 
generalization. Extensive experiments on MRI, CT, 
and OCT datasets demonstrate that our framework 
significantly outperforms fully supervised and 
individual SSL methods, particularly in low-labeled-
data scenarios. This work highlights the potential of 
SSL in reducing the dependency on large annotated 
datasets, facilitating wider adoption of deep learning 
in medical imaging applications. 

Future work could explore the extension of the 
framework to three-dimensional (3D) segmentation 
tasks in volumetric data, which are common in 
medical imaging. Additionally, incorporating other 
SSL techniques, such as graph-based methods or 
adversarial training (with careful consideration of 
training stability), may further improve performance. 

Investigating the application of the framework to 
other medical imaging modalities, such as 
ultrasound or positron emission tomography, could 
demonstrate its generalizability. Finally, 
collaborating with clinical experts to evaluate the 
practical impact of the improved segmentation in 
real-world clinical workflows would provide 
valuable insights. 
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О. І. Чумаченко, К. Д. Рязановський. Напівконтрольована сегментація медичних зображень 
Цю статтю присвячено розробці методу (алгоритму) сегментації медичних зображень на основі 
напівконтрольованого навчання. Показано, що методи напівконтрольованого навчання мають значний 
потенціал для покращення сегментації медичних зображень за рахунок ефективного використання 
немаркованих даних. Однак залишаються проблеми з адаптацією цих методів до конкретних характеристик 
медичних зображень, таких як висока мінливість, дисбаланс класів та наявність шуму і артефактів. Для 
подолання зазначених труднощів запропоновано інтегрувати кілька підходів (регуляризація узгодженості, 
псевдомаркування, модель середнього вчителя) до єдиної структури. Для підвищення надійності та 
узагальнення моделі для різних методів візуалізації включаємо доповнення до даних, специфічні для 
конкретної галузі, адаптовані до унікальних характеристик та проблем кожного методу. Масштабні 
експерименти з наборами даних магнітно-резонансної томографії, комп'ютерної томографії та оптично 
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когерентної томографії демонструють, що розглянута структура значно перевершує повністю контрольовані та 
індивідуальні методи напівконтрольованого навчання, особливо у сценаріях з низьким рівнем маркування 
даних. 
Ключові слова: напівконтрольоване навчання; сегментація медичного зображення; регулярізація узгодженості; 
псевдомаркування; середній учитель; глибоке навчання. 
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