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Abstract—This paper is devoted to enchasing existing multi-view semi-supervised ensemble learning 
algorithms by introducing a cross-view consensus. A detailed overview of three state-of-the-art methods 
is given, with relevant steps of the training highlighted. A problem statement is formed to introduce both 
semi-supervised framework and consider the semi-supervised learning in the context of optimization 
problem. A novel multi-view semi-supervised ensemble learning algorithm called multi-view semi-
supervised cross consensus (MSSXC) is introduced. The algorithm is tested against 5 synthetic datasets 
designed for semi-supervised learning challenges. The results indicate improvement in the average 
accuracy of up to 10% in comparison to existing methods, especially in low-volume, high density 
scenarios. 

Index Terms—Machine learning; semi-supervised learning; label propagation; multi-view training; 
ensemble. 

I. INTRODUCTION 

With the development of modern technologies 
and computing capabilities, machine learning 
methods are becoming more and more powerful and 
effective. One of the important directions in this 
field is the methods of training using multi-view 
learning, which is aimed at improving the accuracy 
of models by combining information from different 
models or data representations. 

The multi-view boosting method is one of the 
promising approaches in this field. It is based on the 
combination of ideas of boosting and multi-view 
learning, resulting in more accurate and reliable 
models due to the use of different types of data. 
Boosting is known to be a powerful ensemble 
learning technique that combines weak classifiers to 
create a single strong classifier. The application of 
this technique in the context of multi-view learning 
allows to significantly increase the effectiveness of 
models due to the use of additional information from 
various sources. 

In this paper, the main concepts and approaches 
of multi-view boosting are considered, existing 
methods and architectures analyzed, and an 
improvement to the approaches proposed. 

The purpose of this work is to research and 
analyze the effectiveness of multi-view boosting in 
comparison with traditional approaches, as well as to 
determine the conditions under which this method 
gives the best results. The implementation of 

experiments and the analysis of the obtained results 
will highlights the advantages and limitations of 
multi-view boosting in various classification tasks. 

This paper structured in the following way: in the 
literature review section we provide an overview of 
existing techniques of semi-supervised learning and 
provide an overview of the existing methods and 
brief descriptions of the algorithms used. In the 
problem statement section we provide a formal 
statement of the problem and outline the setting of 
semi-supervised learning that is considered in this 
work. In the method section a detailed description of 
proposed method is given. In the result sections 
details of the experiment setup and hyper parameters 
is outlined. In the discussion section, the 
interpretation of results is given and some nuances 
of the approach and experiment are highlighted. 
Lastly, in the conclusion section we highlight the 
pros and cons of the proposed approach and propose 
the direction of future research. 

The results of this work are useful for researchers 
and practitioners in the field of machine learning, 
engaged in the development and implementation of 
new methods and algorithms for processing large 
volumes of data using multi-view approaches. 

II. LITERATURE REVIEW 

Semi-supervised learning combines a limited 
amount of labeled data with a large amount of 
unlabeled data to achieve better accuracy when 
compared to supervised learning [1]. Most common 
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approaches to semi-supervised learning include self-
learning [2], co-training [3], graph methods [4], and 
boosting-based methods [5]. 

Boosting is a general ensemble technique for 
improving the performance of classification 
algorithms by combining several weak classifiers to 
create a single strong one. In particular, algorithms 
based on boosting, such as Multi-SemiAdaBoost 
(MSAB) [6], Multi-View Semi-Supervised Boosting 
(MSSBoost) [7], and Multi-View Semi-Supervised 
Self-Adaptive Algorithm (MS3A) [8] have 
demonstrated high performance in multi-class 
classification tasks, including sentiment analysis in 
texts. 

In article [8], a hybrid semi-supervised boosting 
algorithm for text sentiment analysis is introduced. 
This approach involves using a classifier predictions 
together with similarity information to assign labels 
to unlabeled examples. The proposed model 
demonstrates that effective use of unlabeled data can 
significantly improve classification performance. 

One of the key advantages of multi-view 
boosting is the ability to combine information from 
different sources (views) to build a more accurate 
model [9]. This allows the use of different types of 
data, which can contain additional information that 
is not taken into account when using only one type 
of data. However, finding appropriate similarity 
functions and computing optimal parameters can be 
complex tasks that require significant computational 
resources and experimental validation. 

Research shows that using semi-supervised 
boosting algorithms such as MS3A-Ensemble can 
significantly improve classification performance. For 
example, in sentiment analysis of tweets, where 
different similarity functions and hybrid models were 
used, high accuracy and stability of results were 
achieved even with a limited amount of labeled data. 

In this section we will provide a brief overview 
of the methods outlined above as they are the basis 
for the improvements proposed in this work. 
Specifically, we review MSAB and MS3A-
Ensemble as the state-of-the art algorithm. 

We will start by introducing the MSAB 
algorithm. The MSAB algorithm is designed for 
semi-supervised multi-class classification. Its 
architecture is based on traditional boosting 
methods, but includes mechanisms for using 
unlabeled data. MSAB algorithm consists of the 
three steps: 

1) Initialization. During this step all of the hyper 
parameters for the baseline learner are defined and 
each sample (both labeled and unlabeled) receives a 

weight, initially set to the same constant greater 
than 0. 

2) Boosting Cycle. During this step, each weak 
classifier is trained on the current weights of the 
samples. During the training both labeled and 
unlabeled data is used. After the raining is complete, 
it’s error rate is tested on labeled samples. Based on 
the error rate, the weights for labeled samples are 
updated. The weights for correctly labeled samples 
are decreased, while the weights for incorrect 
samples are increased. 

3) Results from each weak classifier are 
combined based on the weights derived during the 
second step. During the inference, the result from 
each weak classifier weighted, and a consensus-
based decision is formed. 

4) This algorithm is great, as it has few hyper 
parameters and is easy to apply, however it’s 
accuracy boost is weaker than multi-view methods.  

5) As such, let’s take a look at a multi-view 
boosting method – MS3A-Ensemble. This algorithm 
uses information from different views 
(representations) of data to improve classification 
accuracy. The algorithm has 3 primary steps: 

6) Initialization. The weights of all training 
examples (marked and unmarked) are initialized 
with equal values. The number of views 
(representations) and the number of iterations of the 
algorithm (T) is set. 

7) Boosting Cycle. Firstly, a weak classifier is 
trained for each view. At each iteration, a weak 
classifier is trained for each view of data (V1, V2, ..., 
Vn). Weak classifiers are trained using both labeled 
and unlabeled data. Errors of classifiers are 
estimated separately for each view. Sample weights 
are updated for each view independetly, taking into 
account the errors of the corresponding classifiers. 

8) View result combination. After completing the 
training iterations, the results of all weak classifiers 
for each view are combined based on the weights. A 
visual representation of the training method is 
presented in Fig. 1. 

 
Fig. 1. MS3A-ensemble method 
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III. PROBLEM STATEMENT 

In this paper the problem of semi-supervised 
learning is considered in the generall setting: given l 
labeled points L={(x1, y1), ..., (xl, yl)} and u 
unlabeled points U={xl+1, ..., xl+u}; with l being 
much smaller than u (l<<u). Let n = l + u be the 
total number of data points. In this paper, the testing 
will be performed with binary labels, or  0,  1y . 

The goal of semi-supervised learner fSSL is to 
provide an improvement of the goal metric g over 
the supervised learner fS. This can be considered an 
optimization problem: 

   
SSL

SSLmax ( ) ( ) .Sf
g f x g f x              (1) 

As such, the aim of this research is to propose a 
learner fSSL that outperforms supervised learning 
methods fS, and provides an improvement over 
existing methods. 

It is important to properly select a goal metric g, 
as suboptimal selection can lead to skewed results. 
Selecting model-level metrics such, as loss, is 
acceptable when comparing two models with the 
same architecture, however it is not useful when a 
different definition of loss or different models are 
used. As such, the common choice of goal metric is 
batch-level aggregated metrics like average 
accuracy, recall, and precision. In the setting that is 
explored in this paper, a two-class dataset is used, 
with each class being equal. As such, average 
accuracy is the best metric to optimize: 

 TP TNAA .
TP+TN+FP+FN


  (2) 

where TP are true positives; TN are true negatives; 
FP are false positives; FN are false negatives. 

IV. METHOD 

In the methods outlined in the literature review 
section, we have outlined two common methods – 
MS3A and MSBA. One of the aspects that these 
methods do not explore, however, is cross-view 
consensus during the training. 

In the inference stage, the results from each 
window are aggregated to generate the final decision, 
however in the training stage each view (partition) of 
data is considered independently. Please note that 
view and partition are considered interchangeable 
terms in this paper. However, if we are able to 
introduce the cross-view interaction in the training 
process it will solve several problems, namely: 

 view splitting can be done by using different 
classifiers or slices of data, no explicit definition of 
similarity function required; 

 weak classifiers will be able to share domain 
knowledge, reinforcing the learning, improving the 
convergence and accuracy; 

 we could leverage smoothness assumption 
more during the training process and provide a more 
rigid framework for the application of semi-
supervised methods; 

 semi-supervised learning can hurt the accuracy 
in comparison to supervised learning. This is 
especially true for multi-view training as each view 
can introduce bias. 

As such, proposed method aims to address all of 
the issues by applying smoothness-based consensus 
over the partial results for each view, called 
“MSSXC” (multi-view semi-supervised cross 
consensus). 

The proposed method is based on applying the 
smoothness assumption in the optimization problem 
setting (1) to improve the target goal in comparison to 
the baseline supervised classifier for each view. Then, 
a proxy labeling approach is used to select high 
confidence samples from best-performing classifiers.. 

The training process consists of three steps – 
initialization, semi-supervised cross-view weak 
classifier training, and aggregation weight derivation. 

The initialization step is similar to MS3A 
algorithm – we initialize k weak classifiers and set the 
hyper parameters of our models. What is different, 
however, is the choice of view generation methods. 
Two strategies that can be used are k different 
classifier types trained on the same data in the 
democratic co-training scenario and splitting the 
dataset either into slices with all of the attributes or 
slices by attribute group. The choice of strategy 
should be based on the dataset used to train the 
learner. 

After the view generation strategy is selected, the 
boosting loop begins. The goal of MSSXC is to 
provide sustainable learning performance that is 
better or equal to the supervised learning. To achieve 
this, before the first loop a fully supervised weak 
learner fS is trained using all of the labeled data. 
Additionally, each semi-supervised learner fSSL_k is 
trained using the labeled data Lk. This setup ensures 
that all of the views are properly initialized and the 
baseline for comparisons is set up. 

Once the boosting preparation is complete, a 
training cycle begins. The first step is learner 
evaluation. To ensure that the training will not 
degrade target metric, only weak learners that 
outperform the baseline classifier are considered for 
the label propagation step. More formally, an 
evaluation derived from (1) is performed as: 

    SSL ,
ii Ss g f g f   (3) 



 
18                                                                    ISSN 1990-5548   Electronics and Control Systems  2024. N 3(81): 15-21 
 

 

where  0,i k  is a one of the training partitions 
(views); g is the goal metric based on (1); SSLi

f  is 
the learner for ith partition; Sf  is the baseline 
supervised classifier. 

After each weak semi-supervised learner is 
evaluated and compared, learners that are weaker than 
the baseline are removed from consideration (as their 
knowledge capacity is below the supervised learner 
and they are likely to degrade the result). This is done 
by filtering out all SSLi

f , for which is  is less than 0. 
This concludes the learner evaluation sub step. 

The next step is dominant learner label 
propagation. The idea of this step is to use the 
strongest weak learner to propagate it’s knowledge 
to other views. This is achieved by first adding all of 
the weak learners SSLi

f  to the priority queue Qls 

based on their metric score is  If no learner is 
stronger than the base learner Sf , then it is selected 
as the dominant learner Dl. Otherwise, the learner 
with the highest goal score si is selected from the Qls 
and becomes a dominant learner Dl. After the 
dominant learner is chosen, it is used as a proxy-
label for each partition of the data. More formally, 
this process is represented by formulae (4) and (5). 

 SSL SSLmax ,
i i

i
lsS

Dl f f Q   (4) 

     conf
, , ,i i j j j i jL L x Dl x x U Dl x      (5) 

where Li are labeled samples for partition I; Ui are 
unlabeled samples for partition i; xj are unlabeled 
samples from partition Ui; Dl(xj)conf is the confidence 
of the dominant learner in the label for the input xj; 
and   is the minimal confidence threshold for 
labeling decision that is set up as a hyperparameter. 
After all of the partitions’ labels are propagated, the 
each weak learner SSLi

f  is retrained using the 
updated dataset Li. Evaluation step is performed 
again and Qls is repopulated with updated confidence 
scores. It is worth noting that the dominant classifier 
is evicted from Qls to prevent overfitting. The 
training loop is repeated either T times, or until g 
converges. Li is resetored to it’s original state after 
each iteration to prevent a mistake by a weak 
classifier from biasing the results of the training. 

After the training is conducted, the final step is to 
construct an ensemble from the weak learners. This 
is achieved by applying the bagging technique. The 
evaluation of each weak learner against the metric g 
is performed, and voting coefficients are defined as: 

 
 
 
SSL

SSL

,i

i

c
ic j

cj k

g f
v

g f





 (6) 

where icv  is the voting coefficient for the learner i 
for class c; gc is the goal metric for class c. 

Voting coefficient are saved together with model 
weights and are utilized in the inference time. After 
each weak learner creates a prediction vector for a 
given input, it is multiplied by the associated voting 
coefficient and summed together. This provides a 
probability vector, akin to applying softmax: 

 SSL ( ),
ic

i
c ici k

y v f x


    (7) 

where cy  is the probability of class label belonging 
to class c; x is the given input; icv  is the voting 
coefficient for the learner i for class c; SSLic

f  is the 
probability of x belonging to class c given by the ith 
weak learner. 

The proposed method is flexible and has few 
hyper parameters to tune, which makes it ideal for 
low-dimensional and relatively simple datasets with 
a limited label count available. 

V. RESULTS 

To test the effectiveness of the algorithm, an 
experiment was conducted on five synthetic data sets 
with different percentages of labeled and unlabeled 
data. 

A. Datasets 
In this work, five datasets are used to evaluate the 

performance of the algorithm – three variations of the 
synthetic data set "Two Moons", the control data set 
"Circles" and the data set "Banana". 

"Two Moons" is a common dataset that is used 
for evaluating the performance of semi-supervised 
learning. The main challenge with this data set is 
that naive label propagation algorithms will capture 
part of the other crescent depending on the distance 
between them. There are three data set options – 
wide, normal and narrow. Each option posses a 
certain challenge. Wide dataset is easy to label, so it 
serves as a “control”, classic dataset have a minor 
overlap without any high-density regions, and tight 
variation introduces a high-density area, blurring the 
decision boundary. 

A visualization of three variants of the “Two 
Moons” data set is shown in Fig. 2. 

The “Banana” data set is more complex because 
it consists of two variants, one of them can be 
demarcated with a small distance between classes, 
the second has several intersections. 

One of the classes is located in the middle of the 
other, but at the same time there is a small distance 
between them and, with the exception of a few 
anomalies, they do not intersect (Fig. 3a). 



V.M. Sineglazov, K.S. Lesohorskyi 
Semi-supervised Multi-view Ensemble Learning with Consensus                                                                                 19 
 

 

The data set “Circles” acts as a control data set 
for testing the correctness of the algorithm 
implementation (Fig. 3b). Supervised and semi-
supervised learning should show high accuracy on 
this dataset. 

 
                a)                           b)                        c) 

Fig. 2. “Two Moons” dataset – wide (а), classic (b), 
tight (с) 

 
Fig. 3. Data sets “Banana” (a) and “Circles” (b) 

While selected datasets are relatively simple, they still 
poses a certain degree of challenge, especially “Banana” 
and “Two Moons” tight. Due to the small distance 
between classes (or even data overlap), it is almost 
impossible to get a perfect accuracy, especially on the 
lower percentages of labeled data.  

Synthetic datasets also ensure reproducibility of 
results, and their customization ability allows for a more 
flexible experiment setup. 

B. Methodology 
After the fully labeled dataset is generated, it is 

prepared for a semi-supervised learning. First, we 
train a baseline for the experiment, using 100% of 
labeled data. This serves as a “sanity check” of sorts, 
and enables the detection of issues early. 

After the baseline classifier is trained, the data is 
split into labeled and unlabeled sets. In this 
experiment we test 1, 10 and 50 percent of labeled 
data. To prevent data skew, especially on lower 
labeled data count, we use stratified strategy to drop 
labels from classes equally. 

Our method is learner-agnostic (it can use any 
learner type), as such we use support vector machine 
(SVM) [10] ensemble with radial bias function 
kernel for its simplicity. 

In this setting a 5-view partitioning is used. We 
use democratic co-training splitting function, however 
as in this experiment only two classes are present, a 
bias is introduced by mixing two classes in the 
following proportions for each learner: 0–100, 20–80, 
50–50, 80–20, 100–0. This ensures that each view 
have different representation of the groundtruth data. 

We select average accuracy as presented in (2) as 
our goal metric for optimization g. We set T = 20 
(training epochs), and classification confidence 
threshold   = 0.95 for 10 and 50 percent labeled 
data scenarios and   = 0.9 for 1 percent labeled 
data. The experiment is repeated to achieve a 95% 
confidence at 5% margin of error. 

The results of the experiments are given in 
Table I. 

TABLE I. ACCURACY OF CLASSIFIERS 

Algorithm / Percentage of 
labeled data 1% 10% 50% 

Two Moons Wide MSAB 97.2% 97.4% 97.4% 
Two Moons Wide MS3A 100% 100% 100% 
Two Moons Wide MSSXC 100% 100% 100% 
Two Moons Wide Supervised 89.4% 98.5% 100% 
Two Moons Classic MSAB 98.2% 98.9% 99.9% 
Two Moons Classic MS3A 100% 100% 100% 
Two Moons Classic MSSXC 100% 100% 100% 
Two Moons Classic Supervised 97.2% 99.0% 100% 
Two Moons Tight MSAB 79.6% 92.1% 95.3% 
Two Moons Tight MS3A 81.2% 93.4% 94.9% 
Two Moons Tight MSSXC 87.2% 94.1% 95.8% 
Two Moons Tight Supervised 79.5% 80.3% 92.1% 
Banana MSAB 49.3% 50.8% 54.2% 
Banana MS3A 50.2% 55.9% 75.7% 
Banana MSSXC 53.4% 65.8% 79.7% 
Banana Supervised 50.1% 52.8% 60.1% 
Circles MSAB 80.3% 100% 100% 
Circles MS3A 96.3% 100% 100% 
Circles MSSXC 97.0% 100% 100% 
Circles Supervised 80.1% 100% 100% 

VI. DISCUSSION 

As can be seen from the experiment results in 
Table 1, the proposed algorithm has an advantage in 
low-volume scenarios with a data overlap. In other 
scenarios, it’s performance is comparable to MS3A, 
and always either meets or exceeds it. It is also 
worth noting that MSSXC never looses to the 
supervised learner, as by design it never selects a 
learner that would perform worse than a supervised 
learner. 
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Two datasets worthy of paying more detailed 
attention two are two moons tight and banana. In 
other scenarios, algorithms performed as expected 
and did not face any challenges. 

In two moons tight there are slight areas of 
overlap, near the point where two crests connect to 
each other, which introduces a high-density area. In 
this scenario, on low data volume (1%), MSSXC 
shows better (by 6%) classification accuracy. 

Same observation can be found when analyzing 
the results for banana dataset. MSSXC outperforms 
MS3A in all scenarios, with 1% and 10% of data 
being the most prominent. The biggest difference is 
at 10% of labeled data. 

The explanation for this phenomena can be two-
fold. Firstly, by design, the algorithm is better at 
identifying a decision boundry in high-density 
spaces as it uses the strongest learner and is also 
capable of sharing the domain knowledge cross-
view by switching dominant learner on each 
iteration. Secondly, the experiment setup is 
favorable for this type of learning, as two dominant 
learners come from two most saturated views (100–0 
and 0–100 partitions respectively). Re-labeling of 
unlabeled data on each iteration ensures that even if 
a mistake was made previously, a dominant learner 
has an opportunity to correct it, creating a balanced 
environment which provides better decision 
boundaries for each class. 

VII. CONCLUSION 

In this work, a novel algorithm for multi-view 
semi-supervised cross consistency learning was 
introduced. The algorithm expands on existing 
multi-view semi-supervised methods by introducing 
a consistency to classifiers by using highest 
confidence learner in label propagation stage and 
introducing a dominant learner rotation mechanism 
that prevents (or at least minimizes the impact of) 
over fitting. Additionally, the algorithm has 
mechanisms that prevent it’s performance from 
being worse than just a supervised classifier 
ensemble. 

Experimental results indicate that proposed 
algorithm works well in high-density regions with 
low label count, outperforming both supervised 
classifiers and existing algorithms. This is achieved 
by consistency mechanism providing better decision 
boundary placement in high-density regions. 

The primary limitation of this research is that it 
was tested on fairly simplistic synthetic datasets. 
While such datasets are great for testing, evaluation 
and creating extreme scenarios, they might not 
represent all aspects of real-world challenges. 

Future work involves testing the dataset on more 
real-world datasets and expanding learners to 
support high-dimensional data. This can be achieved 
by using more complex learners (e.g. neural 
networks), instead of support vector machines that 
were used in this paper.  

REFERENCES 

[1] Y. C. A. P. Reddy, P. Viswanath, and B. Eswara 
Reddy, “Semi-supervised learning: A brief review,” 
Int. J. Eng. Technol, 7.1.8, 2018: 81. 
https://doi.org/10.14419/ijet.v7i1.8.9977 

[2] Prarthana Bhattacharyya, Chengjie Huang, and 
Krzysztof Czarnecki, “SSL-lanes: Self-supervised 
Learning for Motion Forecasting in Autonomous 
Driving,” Conference on Robot Learning. PMLR, 
pp. 1–12, June 2022. arXiv:2206.14116v1 [cs.CV] 28 
Jun 2022 

[3] Islam Nassar, et al., “All labels are not created equal: 
Enhancing semi-supervision via label grouping and 
co-training,” Proceedings of the IEEE/CVF 
Conference on Computer Vision and Pattern 
Recognition, 2021. 
https://doi.org/10.1109/CVPR46437.2021.00716 

[4] Yixin Liu, et al. “Graph self-supervised learning: A 
survey,” IEEE transactions on knowledge and data 
engineering, 35.6, 2022, 5879–5900. 

[5] Yuhao Chen, et al., “Boosting semi-supervised 
learning by exploiting all unlabeled data,” 
Proceedings of the IEEE/CVF Conference on 
Computer Vision and Pattern Recognition, 2023. 
https://doi.org/10.1109/CVPR52729.2023.00729 

[6] Jafar Tanha, Maarten van Someren, and Hamideh 
Afsarmanesh, “An adaboost algorithm for multiclass 
semi-supervised learning,” 2012 IEEE 12th 
International Conference on Data Mining. IEEE, 
2012. https://doi.org/10.1109/ICDM.2012.119 

[7] Ion Muslea, Steven Minton, and Craig A. Knoblock, 
“Active+semi-supervised learning=robust multi-view 
learning,” ICML, vol. 2, 2002. 

[8] Dan Shi, et al., “Flexible multiview spectral 
clustering with self-adaptation,” IEEE Transactions 
on Cybernetics, 53.4, 2021, 2586–2599. 
https://doi.org/10.1109/TCYB.2021.3131749 

[9] Jing Zhao, et al., “Multi-view learning overview: 
Recent progress and new challenges,” Information 
Fusion, 38, 2017, 43–54. 
https://doi.org/10.1016/j.inffus.2017.02.007 

[10] Hearst, Marti A., et al., “Support vector machines,” 
IEEE Intelligent Systems and their applications, 13.4 
1998, 18–28. 
https://doi.org/10.1016/j.inffus.2017.02.007 

Received August 12, 2024



V.M. Sineglazov, K.S. Lesohorskyi 
Semi-supervised Multi-view Ensemble Learning with Consensus                                                                              21 
 

 

Sineglazov Victor. ORCID 0000-0002-3297-9060. Doctor of Engineering Science. Professor. 
Head of the Department of Aviation Computer-Integrated Complexes. 
Faculty of Air Navigation Electronics and Telecommunications, National Aviation University, Kyiv, Ukraine. 
Education: Kyiv Polytechnic Institute, Kyiv, Ukraine, (1973). 
Research area: Air Navigation, Air Traffic Control, Identification of Complex Systems, Wind/Solar power plant, 
artificial intelligence. 
Publications: more than 700 papers. 
E-mail: svm@nau.edu.ua 

Lesohorskyi Kyrylo. ORCID 0000-0002-3297-9060. PhD Student. 
Department of Information Systems, Faculty of Informatics and Computer Science, National Technical University of 
Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Kyiv, Ukraine. 
Education: National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute,” Kyiv, Ukraine, (2022). 
Research interests: artificial neural networks, artificial intelligence, distributed computing. 
Publications: 8. 
E-mail: lesogor.kirill@gmail.com 

В. М. Синєглазов, К. С. Лесогорський. Напівкероване багатовидове навчання з ансамблями на основі 
консенсусу 
Статтю присвячено вдосконаленню існуючих алгоритмів напівкерованого ансамблевого багатовидового 
навчання шляхом введення консенсусу між видами. Подано детальний огляд трьох найсучасніших методів із 
виділенням відповідних етапів навчання. Формується постановка задачі, щоб представити як напівкеровану 
структуру, так і розглянути напівкероване навчання в контексті проблеми оптимізації. Представлено новий 
багатовидовий напівкерований ансамблевий алгоритм навчання під назвою багатовидовий напівкерований 
перехресний консенсус (MSSXC). Алгоритм перевірено на п’яти синтетичних наборах даних, призначених для 
напівкерованого навчання. Результати вказують на підвищення середньої точності до 10% порівняно з 
існуючими методами, особливо в сценаріях з малим обсягом і високою щільністю. 
Ключові слова: машинне навчання; напівкероване навчання; поширення мітки; багатовидове навчання; 
ансамблі. 
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