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Abstract—The purpose of the study is to develop an approach to planning the trajectory of a robot
manipulator using an intelligent system based on neural networks. For this purpose, the work considered
the processes of planning and deploying the movement of the robot. The analysis of existing methods of
planning the movement of robot manipulators and the review of intelligent control systems provided a
comprehensive picture of the current state of this issue. A system is proposed that can perceive the
environment and controls the movement of the robot by generating correct control commands. For this
purpose, 3 tasks were solved, namely, the analysis of the environment in order to determine its features,
the determination of the trajectory in order to neutralize the collision, and the determination of controlled
influences for the executive bodies in order to implement the movement. The functionality and structure of
the neural network for solving each of the tasks is proposed. The proposed approach is compared with
existing approaches on key parameters, such as the execution time of the planned movement and the time
of calculating the movement trajectory. The results confirmed that the use of neural network to optimize
the trajectory and dynamic prediction to avoid obstacles significantly increased the adaptability of the
system to the changing conditions of the production environment, which opens up new opportunities for
improving automated processes and providing optimal conditions for the functioning of manipulator

robots in real-time.

Index Terms—Machine learning; neural networks; motion planning system; intelligent system.

I. INTRODUCTION

Modern requirements for automated systems
require the development of new motion planning
methods to ensure the accuracy and optimality of
robot actions in dynamic production conditions, as
existing approaches often have limitations and are
unable to provide flexibility in solving dynamic
production scenarios This need is caused by the
dynamism of the production environment where
robots have to function.

Existing methods using optimization and
heuristic search methods often have limitations, as
they lack flexibility and do not guarantee the
optimality and accuracy of robot actions in changing
conditions. This is due to the fact that traditional
methods based on optimization and heuristic search
algorithms are not without drawbacks. They usually
use a large number of intermediate points, which
requires additional processing and complicates their
practical application. In addition, such methods do
not take into account dynamic changes in the
production environment, such as deformations of
robot components or changing operating conditions.
This can lead to collisions with dynamic obstacles,
which poses risks to robots, people and the
environment.

For example, due to the deformation of structural
elements, one robot may collide with another if it
does not enter the common area in time or is
delayed. This highlights the urgent need for motion
planning methods that take into account the dynamic
changes in the production environment.

The development of such methods is of great
practical importance. Their implementation will
ensure the safe and effective use of robots in
dynamic environments where they must interact
with other robots and surrounding objects.

Motion planning taking into account dynamic
changes opens the way to increasing the accuracy
and efficiency of robots. This will lead to better
performance of tasks, saving resources and
increasing productivity. Also, this method will
reduce the risk of collisions, as the probability of
emergency situations will be significantly reduced
due to better traffic planning.

As a result, this will lead to the expansion of the
spheres of use of robots. Because the ability to adapt
to dynamic changes will make robots more versatile
and allow them to be used in a wider range of tasks.
Therefore, there is a problem of developing a method
of planning robot movement with the possibility of
taking into account changes in dynamic production
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scenarios. The results of this research are needed in
practice, because they determine the possibility of
safe and effective use of robots in conditions where
they must interact with dynamic surrounding objects,
for example, other robots.

II. PROBLEM STATEMENT

Robotic systems with a high degree of freedom
face the problem of a large solution space when
planning motion. The non-linearity of the robot's
working environment makes this task even more
difficult [1].

In the analysis of traditional robot motion
planning methods, key techniques such as geometric
trajectory planning, inverse kinematics method,
dynamic programming, and random positions and
optimization methods should be addressed.

Geometric trajectory planning determines the
movement of the robot based on the geometric
characteristics of the workspace. This method allows
you to specify the exact position and orientation of
the manipulator, but may be limited by the
complexity of solving problems for complex user
convenience, it has its limitations, particularly in the
area of adaptation to changing conditions [2].

The inverse kinematics method is used to
determine the input angles or positions of the
manipulator to achieve a specific position or
trajectory. This method is effective in solving
problems for specific points in space, but may lose
accuracy in complex problems due to a large number
of possible solutions. Also, it is used in most
industrial robot control systems [3].

The inverse kinematics method allows you to
determine the robot's kinematic parameters based on
its position and orientation.

Dynamic programming considers the movement
of the manipulator as a sequence of actions with
criteria minimization. This method is effective for
optimization problems and for planning trajectories,
in particular in cases where the dynamic constraints
of the robot are important. However, it can be
computationally expensive for real time in complex
environments, especially with a large number of
dimensions of the decision space and complex
tasks [4].

Regarding random positions and optimization
methods, these approaches often use random points
to reduce the number of intermediate points in the
trajectories or use optimization methods to reach
optimal solutions.

In order to perform a comparative analysis of the
above-mentioned approaches, a table should be
drawn up in which their main characteristics and
differences will be displayed (Table I).

To solve the problem, it is proposed to use
intelligent control systems, namely neural networks.
Because they play a key role in improving and
optimizing the movement of manipulators, because
they provide flexibility and adaptability to changing
conditions and allow automating and simplifying the
calibration processes of moving robot elements,
ensuring maximum accuracy and speed of work [5].

For this, it is necessary to create a neural
network, which should generate the trajectory of the
robot's movement without collisions with dynamic
obstacles.

The neural network must use the robot's real
motion dynamics and motion trajectory based on the
actual motion execution to accurately calculate the
robot's actual motions and trajectory. The planned
movement of the robot may differ slightly from the
actual movement.

All this allows us to state that it is appropriate to
conduct a study dedicated to the development of an
approach to the creation of an intelligent system for
planning the movement of robots.

IIl. PROBLEM SOLUTION

In order to achieve the set goal, which consists in
the development of an intelligent system based on
neural networks for planning the trajectory of a
robot manipulator, it is worth proposing an approach
that takes into account the key aspects of motion
optimization and control. The following tasks can be
included in this approach:

o the task of analyzing the environment in order
to determine its features.

o the task of determining the trajectory in order
to neutralize the collision.

e the task of determining controlled influences
for executive bodies in order to implement the
movement.

Neural networks such as convolutional neural
networks, recurrent neural networks, deep neural
networks, and autoencoders are best suited for
manipulator robot motion planning systems (Fig. 1).

Neural networks for motion planning
systems for robotic manipulators
CNN

RNN DNN

Autocoders

Fig. 1. Neural networks for robotic manipulators

When considering the use of neural networks to
solve the described problem, it is important to focus
on the analysis and description of architectures that
optimally take into account the features of these
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systems. Neural networks such as convolutional
neural networks, recurrent neural networks, and
deep neural networks are best suited for motion
planning systems of robot manipulators.

Consider a dynamic scene that includes moving
objects or a change in the state of objects over time.
The architecture of convolutional neural networks is
suitable for object recognition. The use of CNN
allows effective recognition of objects in real time,

which is key to planning the safe movement of the
manipulator around objects in the workspace [6].

Dynamic and static scene analysis using the
YOLOV7 neural network is one of the effective
approaches in the field of computer vision [7].
YOLO is one of the most popular architectures for
object detection and localization, and the YOLOv7
version is one of the latest modifications of this
architecture (Fig. 2).

TABLE . COMPARATIVE ANALYSIS OF EXISTING APPROACHES
Approach Peculiarities Advantages Limitations:
Geometric Determines the movement Ensures the exact position and | Difficulty solving problems for
trajectory of the robot according to orientation of the robot complex configurations
planning the geometric Convenient management for Limited adaptation to changing

characteristics of the
workspace

the user

conditions

The inverse Defines the input angles or

Effective in solving problems

Loss of accuracy in complex

methods

kinematics positions of the manipulator | for specific points tasks
method to reach a certain point Used in most control systems | A large number of possible
solutions in complex problems

Dynamic Considers the movement of | Effective for optimization and | Computationally expensive for
programming the manipulator as a planning of trajectories real time

sequence of actions with Allows to take into account Difficulty in use in real time

criteria minimization the dynamic limitations of the | conditions

robot

Random Using random points Reducing the number of Dependence on the initial
positions and intermediate points in selection of random points
optimization trajectories
methods Use of optimization Achieving optimal solutions The need for computing

resources, especially for
complex tasks
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Fig. 2. Structure of the YOLOv7 neural network
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After training, the model can be used to
automatically detect and track moving objects on
video.

However, the analysis of the environment in
order to determine their signs is only part of the task,
after obtaining the signs, it is necessary to determine
the trajectory of the robot's movement in order to
neutralize the collision. For this purpose, it is also
proposed to use a neural network, which will be
aimed at ensuring the safe and efficient operation of
the manipulator in an environment with limited
spatial conditions. Such a network will improve the
safety and performance of the robot, reduce the risk
of collisions and avoid damage to obstacles or the
robot itself.

To solve the task of determining the trajectory in
order to neutralize collisions for the manipulator
robot, it is proposed to use a recurrent neural
network (RNN). Recurrent Neural Networks (RNN)
are used to model motion dynamics (Fig. 3). RNNs
are suitable for taking into account time
dependencies and modeling the dynamics of
manipulator movement, which allows predicting
future states of the system [8]. Applying RNN to
input data including previous and current states
helps to accurately determine the optimal control.

In turn, deep neural networks (Deep Neural
Network, DNN) are better used to optimize
trajectories (Fig. 4). The use of DNN allows to
optimize manipulator movement trajectories, taking
into account geometric and dynamic constraints [9].
Deep perceptrons can be used to solve complex path
planning problems, taking into account a large
number of parameters.

The main idea is that the RNN (Fig. 3) will be
used to model the dynamics of the manipulator
movement, capable of predicting the future positions
of the robot's axes based on the current state, which
is performed using Long Short-Term Memory
(LSTM) layers (Fig. 5).

Movements planned using this approach
correspond to standard movement commands. After
generating the trajectory, it is important to determine
the control influence and transform it into the
commands necessary to execute the movement of
the robot manipulator. Thus, the executive input
network plays a key role in the motor control

system, translating high-level commands into
specific control signals.
The structure of the controlled influence

detection network includes an input layer that
receives high-level commands to determine the
desired movement; hidden layers that perform
calculations and information processing; the output

layer, which generates controlled influences for the
implementation of movement; feedback that adapts
network parameters based on the output signal and
motion results; the parameterization of influences,
where the output values can be adapted according to
the requirements of executive bodies, such as force
or controlled signals (Fig. 6).

Fig. 3. RNN architecture
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IV. RESULTS

We compare the existing robot motion planning
algorithm, namely Rapidly Exploring Random Trees
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(RRT) with the path generated by the system using
the described approach (Table II).

It should be noted that the execution time of the
robot's movement trajectory changes significantly
due to the different distance between the starting and
ending points of the movement.

TABLE II. COMPARATIVE TABLE OF THE EXECUTION
TIME OF TRAJECTORIES GENERATED BY THE APPROACH

USING YOLOV7 AND RRT

Environment The Average movement

distance execution time in

between the | milliseconds

start and

the end S;ZIZZZiZ RRT
A simple static | Low 221 212
environment  “Averaoe 422 543

High 659 836
Complex static | Low 2901 372
environment Average 603 797

High 732 904
A simple Low 244 272
dynamic Average 496 581
environment High 734 958
Complex Low 419 462
dyn.amic Average 765 975
environment  "roon 1071 1294

Therefore, let's divide the distance between the
starting and ending points of the movement in the
test examples into three classes:

1) Small distance (less than 30% of the radius of
action of the robot).

2) Average distance (more than 30%, but less
than 60% of the radius of action of the robot).

3) Long distance (more than 60% of the radius of
the robot).

It is also necessary to pay attention to the fact
that the motion of the robot planned by the existing
system is significantly different from the motion of
the robot proposed by the designed control system.
This is because the RRT control algorithm used in
the planning phase is quite different from the control
algorithm described in the paper, as the RRT
planning phase assumes that the joints can reach
their maximum acceleration. However, in reality, the
robot control system applies only 60% and 45% of
the maximum acceleration for the robot axes [8].
Based on this, the average execution time of
trajectories generated by the proposed approach is
twenty percent faster than RRT.

V. CONCLUSIONS

As aresult of the conducted research, the existing
data and approaches in the field of robot movement

planning were summarized and systematized. The
evaluation of existing manipulator motion planning
methods and the analysis of intelligent control
systems included the results of a comparative study
of geometric trajectory planning, dynamic
programming, inverse kinematics, random positions,
and optimization. This review has highlighted their
characteristics, advantages and limitations.

An approach to planning the movement of
manipulative robots using an intelligent system was
developed, which ensured their ability to self-
regulate and adapt to new conditions. The analysis
of the proposed approach determined a universal
table of execution times of the trajectories, carried
out using YOLOvV7 and RRT.

In general, the developed approach to motion
planning of manipulative robots offers a promising
way to achieve high efficiency and flexibility in
their use in various production conditions. And for
further development in the field of motion planning
of manipulative robots, it is recommended to
research methods for optimizing system operating
parameters, improving machine learning algorithms,
and expanding the use of technology in the field of
variable production and robotic systems for various
tasks.
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B. M. Cuneraasos, B. II. Xonaniscokuii. MeTron mianyBaHHsl i KoopAnHaNii pyxy po0oTa 3 BUKOPHCTAHHAM
HelPOHHHUX Mepexk JJIsl BUPilleHHs1 AMHAMIYHIX BHPOOHUYMX ClleHapiiB

MeToro AoCTiDKEHHST € po3po0Ka MiIXoAay IO IJIaHyBaHHS TPAEKTOpii pyxXy poOoTa-MaHImymsTopa 3a JOMOMOTOI0
IHTEJIEKTYaIbHOI CHCTEMH Ha OCHOBI HEHPOHHUX Mepex. s mporo B poOOTI PO3TISHYTO MPOIECH TUIAHYBaHHS Ta
posropraHHsi pyxy poOora. AHalli3 ICHYIOYMX METOJIB IUIaHyBaHHS pyXy pOOOTIB-MaHIIyJIsITOPIB Ta OTJISX
IHTEJIEKTyaIbHUX CHUCTEM KEpYBaHHS MO3BOJIMIM OTPUMATH BUYEPIHY KAapTUHY Cy4YacHOrO CTaHy IbOTO IHTaHHS.
[TporonyeThes cucteMa, sika MOXE CIIPUHMATH HAaBKOJMIIHE CEPEJOBHIIE Ta KEPyBaTH PyXOM po0OTa, TeHEepylodn
NpaBWIbHI KOMaHAW KepyBaHHA. [[ns mporo Oynio BupimieHO 3 3aBAaHHS, a caMe: aHalli3 CepeloBHUILNA 3 METOI0
BH3HAYEHHS HOTO OCOOIMBOCTEH, BUBHAYCHHSI TPAEKTOPIi 3 METOI0 HEHTpai3allii 3iTKHEHHS Ta BU3HAYCHHS KEPOBaHUX
BIUTUBIB JIJI1 OpPraHiB BUKOHABYOI BJIAJIM 3 METOIO peamizallii pyxX. 3amporoHOBaHO (YHKI[IOHAIBHI MOXKIIUBOCTI Ta
CTPYKTYpY HEHpOHHOI Mepeki Il BUPIMIEHHS KOXHOTO 13 3aBJaHb. 3ampONOHOBAHWK TiAXiJ TIOPIBHIOETHCS 3
ICHYIOUMMH MHIXO0JaMU 33 KIIIOYOBHMH IIapaMeTpaMH, TaKUMH SK Yac BHKOHAHHS 3aIUIaHOBAHOTO PyXy Ta dac
pO3paxyHKy Tpaekropii pyxy. Pesynbratn miaTBepamin, IO BHKOPHCTaHHS HEHPOHHOI Mepexi Uil ONTHUMi3awii
TPAEKTOPIi Ta JUHAMIYHOTO MPOTHO3YBAHHS JUIsl YHUKHEHHS MEPEIIKO 3HaYHO ITiIBUILMIIO aJaNnTHBHICTh CUCTEMH JI0
MIHJIMBHX YMOB BHPOOHHYOI'O CEPEIOBHINA, IO BiJIKPHBAE HOBI MOXIIMBOCTI JUIS BJIOCKOHAJICHHS aBTOMAaTH30BaHHUX
npoueciB Ta 3a0e3Me4yeHHsT ONTHMAIBHUX YMOB Ul (DYHKIIOHYBaHHS POOOTIB-MaHIMyJIATOPIB B PEXHUMI peanbHOroO
qacy.

KuiouoBi ciioBa: ManmHHe HaBYaHHS; HSUPOHHI MEPEKi; CHCTEMA TUIAHYBaHHS PyXYy; iHTEIIEKTyaIbHa CUCTEMA.
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