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Abstract—The construction of an aircraft fuel-measuring system based on hydrostatic pressure sensors is
considered, which makes it possible to determine the fuel residue in the aircraft tanks during its
evolutions. With the evolution of aircraft, measuring the fuel residue in existing fuel metering systems
using float and capacitive fuel level sensors has a rather complex electromechanical design and
significant weight and size characteristics. This together affects the reliability of such systems as a whole
and leads to significant methodological errors in determining the remaining fuel during maneuverable
flight. The proposed system using hydrostatic pressure sensors and a computer can significantly increase
the efficiency of existing fuel metering systems, and can also be used for calibration tests both on the

ground and in flight.

Index Terms—Aircraft fuel system; hydrostatic pressure sensor; parallelepiped; tetrahedron; plane
equation; recalculation of vector in coordinate systems.

I. INTRODUCTION

The errors of float and capacitance fuel gauges
consist of the following components:

e errors resulting from longitudinal and lateral
rolls and accelerations of the airplane;

e errors resulting from inaccurate installation of
fuel tanks and deviations of their dimensions from
those obtained during calculation and calibration;

e temperature errors caused by changes in fuel
temperature in the tank and change of fuel grade;

o errors caused by changes in the voltage of the
power supply.

The first three groups of errors are methodical
errors. And if the errors associated with inaccurate
installation of fuel tanks and temperature errors can
be compensated by introducing additional calibration
schemes, then to compensate for errors caused by the
slope of the "fuel mirror" arising from changes in the
angular orientation of the aircraft and the action of
acceleration on the aircraft are developed not always
successful algorithmic compensators.

The analysis of existing widespread fuel
measuring systems (FMS) of aircraft using float and
capacitive fuel level sensors shows that these
systems measure fuel level in aircraft tanks with
sufficient accuracy only in horizontal flight. During
aircraft evolutions, the measurement of fuel residue
in such FMS leads to significant methodological
errors. In addition, they have a rather complex
electromechanical design and significant mass-size
characteristics, which together affects overall

reliability of such vehicles as a whole. Therefore,
studies aimed at the development of fuel
measurement systems minimizing such
methodological errors are very relevant.

II. PROBLEM STATEMENT

The known methods of measuring the fuel level
in the tanks of modern aircraft using float and
capacitive fuel level sensors do not allow to
determine its residue during maneuvering, when
pitch and roll angles undergo significant changes. In
the conditions of maneuvering flight the methodical
error increases significantly, which during prolonged
maneuvering can lead to undesirable consequences.
In order to obtain stable fuel residue readings for the
above reasons, it is necessary to use new approaches
to the construction of the measuring system of fuel
residue in the tanks of the aircraft with high
reliability, as well as with the minimum mass and
dimensional dimensions.

I1I. PROBLEM SOLUTION

Let us consider the principle of FMS operation
on the basis of hydrostatic pressure sensors (HPS)
on the example of determining the volume of fuel in
the tank of an aircraft made in the form of a
parallelepiped with edges a, b, ¢ with fuel "mirror

height" Ag, (Fig. 1). The base of the parallelepiped
is tied to the horizontal geotopic triangle OENH,
which in this case is considered as an instrumental
one. The angles of heading W, pitch 9§ and roll Y of
the aircraft are assumed for this case to be zero.
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Fig. 1. Determining the volume of fuel in a
parallelepiped-shaped tank

According to the readings of the HPS, which is
located in one of the vertices of the base of the
parallelepiped, we can calculate the height of the "fuel
mirror" (FM) plane hfm. According to Pascal's law

g = e
fm (pg)’

where B is hydrostatic pressure of a liquid with

l)/lﬁ“ :p'g'hfm’

constant density in a homogeneous field of gravity:
p is the density of the liquid; g is the acceleration of
free fall.

The volume of fuel in the tank Vhgy, at height

hgn 18 calculated from the formula of parallelepiped

volume:
V.. =abc=abhy,. )

Modern designs of aircraft fuel tanks are usually
located in the wings and fuselage of the airplane and
have shapes close to a parallelepiped. To solve the
problem of determining the fuel volume in each of
the tanks, it is proposed to divide its space into
inscribed volume figures, the fuel volume in which
can be calculated separately, and the total fuel
volume can be found as the sum of the fuel volumes
of the figures inscribed in the tank. In this article, the
tetrahedron (T) is considered as an inscribed volume
figure.

For example, let us consider the possibility of
partitioning a parallelepiped into tetrahedrons. The
parallelepiped, as can be seen from Fig.2, is
partitioned into four tetrahedrons:

e tetrahedron 1, with vertices:
tetrahedron 2, with vertices:
tetrahedron 3, with vertices:
tetrahedron 4, with vertices:
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Fig. 2. Partitioning a parallelepiped into tetrahedrons

Fuel residue volume V, for tetrahedron No.2 with
vertices 1, 2, 3, 6 (Fig. 3) in the coordinate system of
the instrument trihedron OENH and HPS located in
one of the base vertices can be determined from the
following relations:

1) Total volume of the tank Vy (volume of the
tetrahedron with vertices 1, 2, 3, 6 and two mutually
perpendicular side planes of the tetrahedron):

1 1 1
V():gShO, SZEGb, Vozgabho,

where a, b is lengths of faces T; &, is the calculated
height of T according to the information from HPS
at vertex 2.

2) The volume of the unfilled part of the tank V,,
with vertices in points 1', 2', 3', 6 is determined by
the lengths of the segments of the edges of the
unfilled part of the tetrahedron a' and b' cut off by
the FM. The sought segments @' and b' are found
from the relations for rectangular similar triangles.
Through similar triangles formed by vertices 1, 2, 6
and 1', 2', 6' the segment «' is found, and through
triangles with vertices 3, 2, 6 and 3', 2', 6' the
segment b' is determined:

a'=h
1 1.’
V., =gab (hy =gy ).

3) The desired fuel volume is defined as the
difference between V) and the volume of the unfilled
part of the tetrahedron V,:

V.=V, -V,

To find the fuel residue in a tetrahedron of
arbitrary shape, to calculate the lengths of the
segments obtained from the intersection of the fm
with the edges of the tetrahedron, it is necessary to
recalculate the parameters of the vector
perpendicular to the FM plane /4,{0, /gy, 0} on its
inclined edges. Such a problem of computing the
volume V¥, in segments is solvable, but requires the
use of a rather complex algorithm [1].
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Fig. 3. Volume of fuel residue for the tetrahedron

One of the variants of another solution of the
problem of fuel residue determination for an
arbitrary tetrahedron can be realized with the
transition from volume calculation in segments to
volume calculation by coordinates of fm intersection
with tetrahedron edges.

In general, the equation of the plane, linear with
respect to Cartesian rectangular coordinates is [1]:

Ax+By+Cz+ D=0,

where A4, B and C not equal to zero simultaneously
define the plane.

The equations of three side planes of a
tetrahedron of arbitrary shape with one HPSS in one
of the vertices of the base, which coincides with the
horizontal plane of the instrumental tetrahedron
OENH, can be represented in the following form:

e plane with vertices 1, 6, 3

Axpng +BYeny + CZpyy + Dy =05 (3)
e plane with vertices 1, 6, 2
Ayxpyy + By Yeny + Cozpyy + Dopyy =05 (4)
e plane with vertices 2, 6, 3
Ax ey + B3V + C3zpny + D3y =0, (5)
where

D pyy = Axyopnm + BVioene + CZioenm s

Dy v = Aoy + BYaoewn + Caopnm »
D vy = AxXso gy + BYsopnn + CZaopnn -
The parameters of the planes with respect to the
OENH coordinate system are assumed to be known.
The equation of the FM plane passing through

one of its points and perpendicular to the vector
N{4, B, C} can be represented in the following form

A(x—x0)+B(y—y0)+C(z—ZO)=0. (6)

In the case of parallelism of the FM plane to the
OENH plane (4 = 0, C = 0), equation (6) will take
the following form:

B(y-y,)=0,

for all points of the FM.

The x and y coordinates of the FM for points 1',
2', 3" (Fig. 3) are found as the intersection of the
tetrahedron planes (3) ... (5) with the FM plane (7).

For the coordinates of points 1', 2' 3,
respectively, we have three systems of equations and
their solution with respect to the three points of
intersection of the FM with the tetrahedron:

e for coordinates of point 1'( x|,y » fml's 2] oy ):

AX gy + hy + Cizipygy + Dy =0,

D gy = Axiene + BYorenr + Czo1enm »

AX gy + iy + CoZi gy + Doy =0,

D, pvir = Ao pner + BV + Czpninm»

Z _ Az DIENH — DzENH hfm
IENH — C >
1ENH

— hﬁn(CZENH — CIENH ) + Cz DlENH — C1 DZENH .
Az ClENH - Az1 CzENH

Xient >

(8)
e for coordinates of point 2'( X} ., » Aim2's Zy ey ):

A% gy + i + CoZoprgy + Doy =0,

D, ey = A%z s + BVorenir + CZonenir»

A gy + g + Cszapryy + Dipry =0,

Doy = Axgspner + BVosener + CZozini»
Z _ A3 DzENH — DSENH hfm
2ENH — C >
2ENH
X — P (Cpnir = Copnar) + G Doy = G Dy
2ENH ’

A3 CzENH - Az C3ENH
©)

e for coordinates of point 3'( X5 ., » An3's 23 )
Axi gy + Py + CZipygy + Dy =0,
Dy = A1 811 + BYorenar + Czorpi »
A% gy + My + G2y gy + Dy =0,
Dy = A gy + BYosever + Cospaar »

' A3 DlENH — DSENH h

fim
)

Z3ENH =

Cienu

N M (Copny — Cipne) + G Dy = G Dy
SENH = .
A Covy — 4 Copyy

(10)

According to the found coordinates of FM and the
known coordinates of the tetrahedron vertex x, ;. ,
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Yyenn > Zypny the volume of the unfilled part of fuel
in the tank is determined by the formula [2]:

Xpena Yvenn o Zvenn |

1l x ! z! 1
Vo= L an

6| x, Y2 2 1

X A zy 1

The volume of the remaining fuel is found as the
difference between the a priori known volume of the
tetrahedron V; and the calculated unfilled part V.

The obtained solution of the fuel determination
problem was considered in the OENH coordinate
system. At the same time, in the conditions of a
fixed base and during the aircraft evolutions, the
position of the instrument triangle OXYZ will change
in accordance with the changes in its angular
position relative to the triangle OENH, i.e., with the
changes in the angles of heading , pitch 3, and roll
y of the aircraft. It follows that for finding the
coordinates 1', 2', 3' of the FM intersection with the
edges of the tetrahedron it is necessary to take into
account the inclination of the fm plane relative to the
movable instrumental trihedral OXYZ (Fig. 4).

AY 6

Fig. 4. Tilt of the "fuel mirror" plane relative to the
movable instrumental trihedral

The relationship between the coordinates of the
OENH triangles in OXYZ at the current moment of
time can be found through the rectangular matrix of
directional cosines

B = L(y)L(S)L(y) (12)
in the form
I sinysiny — sinycosy + ]
cosy cos 3 ) ) )
—cosysin3cosy | +sinycosIsiny
B= sin 9 cosJcosy —cosJsiny
) cosysiny + COSYCOSY —
—sinycos 9 . . . o
+sinysin3cosy | —sinysinJsiny

In this case, the coordinates of the tetrahedron
planes in the axes of the tetrahedron OENH will
have the form

Xy ENH
Yvenu |=B| V|- (13)
Zy ENH z

The angles v, 3, and y of the aircraft can be
obtained from the inertial navigation system (INS),
the heading and vertical system and other meters
available on board.

In these cases, the FM plane at points 1',2',3' in
the case of its inclination relative to the moving
instrument triangle OXYZ is defined not by one
vector perpendicular to the FM plane N{O0, /4,,0}, as
it was at zero heading angles vy, 9, and y of the
aircraft, but by three vectors {0, s5,1',0} as it was at
zero heading angles v, 9 and y of the aircraft, but
three:

{0, hfm1", 0}, {0, hfm2", 0}, {0, hfm3", 0}.

Thus, to calculate the heights hg,l', Ag2' and
h3', it is necessary to have information from three
HPS located at the vertices of the base of the
tetrahedron (see Fig.4).

Thus, to solve the problem of determining the
fuel residue in the mobile coordinate system at the
current moment of time, it is necessary, in addition
to the calculated values of As,l', hs2' and Agn3', to
have information about the current coordinates of
the vertices of the tetrahedron x;, y;, z; and the

coefficients of its planes 4;, B;, C;, D; i=1...4 in
the coordinate system OXYZ. These parameters at
the current moment of time can be determined on the
basis of the inverse matrix of directional cosines,
obtained from the direct square matrix B through the

known angles v, 9, y:

_'xi XiENH
Vi | = B Yient | (14)
L Zi ZiENH
_A, A pnn
B, =B BiENH > (15)
K& Cienn
D, =A4x,,+ By, +Cizy, i=1..3 (16)

Based on relations (14) — (16) and calculated
values of heights g1, A2’ , A3’ according to the
readings of three FMSs, the system of equations for
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calculating the coordinates of FM (8) ... (10) in the
axes of the moving trihedron OXYZ is as follows:

T 4, Dy yyy =D, yyy By

b

Xyz ClXYZ (17)
X' — hfm(C2XYZ — CIXYZ) + Cz DIXYZ — Cl DzXYZ
Lz Az ClXYZ - A1 CzXYZ ,
Z _ A3 DZXYZ B DSXYZ hfm
27 C >
2XYZ (1 8)
v P (Coxy —Coxig) + G Dy =G Diyyy
2 )
nz A3 CZXYZ - Az CSXYZ
2 _ As DIXYZ — DSXYZ hfm
vz C >
1XYZ (19)
Y = Pin (Cixrz = Ciag) + G Doy =€ Dixyy ‘
wz As CIXYZ - Al CSXYZ

Based on relations (12) and (14)...(19), the
structure of the algorithm for determining the fuel
residue at the current moment of time for a tank in
the form of an arbitrary tetrahedron for a mobile
aircraft can be represented as follows (Fig. 5).
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Fig. 5. Structure of the algorithm for determining the fuel
residue at the current moment of time

When realizing the method of measuring the fuel
residue in the tanks of aircraft with the division of
tank volumes into tetrahedrons of arbitrary shape,

there is a methodological error associated with the
oscillations of the fuel surface at the occurrence of
aircraft acceleration. For estimation of sensor
measurements in the selected time interval of
pressure measurement it is supposed to use methods
of optimal measurement processing.

At mismatch of planes of tetrahedrons inscribed
in the tank volume with real planes of tanks for
compensation of methodical error the alignment is
required. The alignment procedure can be realized
by measuring by means of FMS the readings of
current fuel consumption at change of heading
angles v, 9 and y of the aircraft and comparing them
with the real readings of fuel residue in the tank. The
difference in readings can be taken into account in
flight in the form of corrections coming from the
calculator.

IV. CONCLUSIONS

The use of hydrostatic pressure sensors in the
system of fuel residue measurement and calculator
allows to solve the problem of increasing the
accuracy of the aircraft fuel measuring system in all
flight modes and to reduce its mass and dimensional
characteristics.
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O. L. Cmipnog, M. K. ®insmkin. Cucrema BUMIpIOBaAHHS NAJHBA JiTaKiB HA 0CHOBI JaTYHKIB riIpoCcTaATHIHOIO
THCKY

Po3pobiieHo mo0Oy10By MaTMBHO-BUMIPIOBAIBHOI CUCTEMH JIITAKA HA OCHOBI JAaTYHKIB T1IPOCTATUYHOTO THCKY, IO Ja€
3MOT'Y BU3HAYHTH 3aJIUIIOK IaJKMBa B 0akax JiTaka MiJ 4ac Horo eBoiowii. [Ipyu eBONOLIAX JiTaKiB BUMIPIOBaHHS
3QTMIIKY MMAJTMBa B ICHYIOYMX CUCTEMaX BHMIipIOBAHHS ITATMBA 33 JOTIOMOTOIO MOTUIABKOBUX 1 EMHICHHUX JATYWKIB PiBHS
MaJIMBa Ma€ JOCUTh CKIAJHY CJICKTPOMEXaHIYHY KOHCTPYKIIIO Ta 3HAYHI MacorabapuTHi xapaktepucTuku. lle B
CYKYITHOCTI BIUIMBa€ Ha HAIIHHICTh TAaKUX CHUCTEM B IJIOMY 1 NPU3BOAMTH 10 3HAYHUX METOAWYHI MOXUOKH Y
BH3HAUEHHI 3aJMINKY IajJuBa TPU MAHEBPEHOMY IOJLOTi. 3amporoHOBaHA CHUCTEMa 3 BHKOPHUCTAHHIM JaTYUKIiB
TiAPOCTATUYHOTO THCKY Ta KOMIT'IOTEpPA MOXKE 3HAYHO ITIBUITUTH €()EKTHBHICTh ICHYIOUMX CHCTEM BHUMIpIOBaHHS
NaJvBa, a TAKOXX MOXKE BUKOPUCTOBYBATHUCS [UIsl KaJIiOpyBaJIbHUX BUIIPOOYBaHb SIK HA 3€MJIi, TaK 1 B MOJIBOTI.

KirouoBi cjioBa: manuBHA cucTeMa JIiTaka, JaTYUK TiAPOCTATHIHOTO THCKY; Mapalielieline; TeTpacap; PiBHIHHS
IUTOLIMHY; NIePePaXyHOK BEKTOPA B CUCTEMaX KOOPIUHAT.
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