Long-term Demand Forecasting: using an Ensemble of Neural Networks to Improve Accuracy

Authors

  • Victor Sineglazov National Aviation University, Kyiv, Ukraine https://orcid.org/0000-0002-3297-9060
  • Andrii Samoshyn National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"

DOI:

https://doi.org/10.18372/1990-5548.77.18002

Keywords:

deep learning, ensemble method, long-term forecasting, demand forecasting, neural networks, multilayer perceptron

Abstract

This research paper proposes a method of long-term demand forecasting based on an ensemble of neural networks that considers the novelty of the data. A tool for creating the ensemble was developed that uses a bagging technique as well as a modification that allows for the relevance and novelty of the data to be considered when creating training samples for each model in the ensemble. The study examines and compares the developed method with known approaches to long-term demand forecasting. Experimental results have indicated that the proposed approach allows for obtaining more accurate and reliable demand forecasts compared to existing methods. The results emphasize the importance of data in the demand forecasting process and indicate the potential of the proposed method to eventually improve inventory management strategies and product planning.

Author Biographies

Victor Sineglazov , National Aviation University, Kyiv, Ukraine

Doctor of Engineering Science

Professor

Head of the Department Aviation Computer-Integrated Complexes

Faculty of Air Navigation Electronics and Telecommunications

Andrii Samoshyn , National Technical University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute"

Bachelor

Educational and Scientific Institute of Applied System Analysis

References

K. Aaltonen, “Project stakeholder analysis as an environmental interpretation process”, International Journal of Project Management, vol. 29, no. 2, pp. 165–183, Feb. 2011 [Online]. Available: https://doi.org/10.1016/j.ijproman.2010.02.001

G. Perin, Ł. Chmielewski, and S. Picek, “Strength in numbers: Improving generalization with ensembles in machine learning-based profiled side-channel analysis”, IACR Transactions on Cryptographic Hardware and Embedded Systems, pp. 337–364, Aug. 2020. [Online]. Available: https://doi.org/10.46586/tches.v2020.i4.337-364

P. Flach, “Model ensembles”, in Machine Learning. Cambridge: Cambridge Univ. Press, pp. 330–342. [Online]. Available: https://doi.org/10.1017/cbo9780511973000.013

G. M. Jenkins, G. C. Reinsel, and G. E. Box, Time Series Analysis: Forecasting & Control. Pearson Educ. Asia Limited, 2005.

E. S. Gardner, “Exponential smoothing: The state of the art—Part II”, International Journal of Forecasting, vol. 22, no. 4, pp. 637–666, Oct. 2006. [Online]. Available: https://doi.org/10.1016/j.ijforecast.2006.03.005

H. F. E. Jr, Regression Modeling Strategies: With Applications to Linear Models, Logistic and Ordinal Regression, and Survival Analysis. Springer London, Ltd., 2015.

R. Xu and D. WunschII, “Survey of clustering algorithms”, IEEE Transactions on Neural Networks, vol. 16, no. 3, pp. 645–678, May 2005. [Online]. Available: https://doi.org/10.1109/tnn.2005.845141

S. Makridakis, E. Spiliotis, and V. Assimakopoulos, “Statistical and Machine Learning forecasting methods: Concerns and ways forward”, Plos One, vol. 13, no. 3, Mar. 2018, Art. no. e0194889. [Online]. Available: https://doi.org/10.1371/journal.pone.0194889

G. Lai, W.-C. Chang, Y. Yang, and H. Liu, “Modeling long- and short-term temporal patterns with deep neural networks”, in SIGIR '18: The 41st International ACM SIGIR Conference on Research and Development in Information Retrieval, Ann Arbor MI USA. New York, NY, USA: ACM, 2018. [Online]. Available: https://doi.org/10.1145/3209978.3210006

G. P. Zhang and M. Qi, “Neural network forecasting for seasonal and trend time series”, European Journal of Operational Research, vol. 160, no. 2, pp. 501–514, Jan. 2005. [Online]. Available: https://doi.org/10.1016/j.ejor.2003.08.037

Z.-H. Zhou, “Ensemble learning”, in Machine Learning. Singapore: Springer Singap., 2021, pp. 181–210. [Online]. Available: https://doi.org/10.1007/978-981-15-1967-3_8

F. Petropoulos, R. J. Hyndman, and C. Bergmeir, “Exploring the sources of uncertainty: Why does bagging for time series forecasting work?”, European Journal of Operational Research, vol. 268, no. 2, pp. 545–554, Jul. 2018. [Online]. Available: https://doi.org/10.1016/j.ejor.2018.01.045

S. Touzani, J. Granderson, and S. Fernandes, “Gradient boosting machine for modeling the energy consumption of commercial buildings”, Energy and Buildings, vol. 158, pp. 1533–1543, Jan. 2018. [Online]. Available: https://doi.org/10.1016/j.enbuild.2017.11.039

“Ensemble learning”, in Machine Learning Fundamentals. Cambridge Univ. Press, 2021, pp. 203–218. [Online]. Available: https://doi.org/10.1017/9781108938051.012

X. Wang, Y. Kang, F. Petropoulos, and F. Li, “The uncertainty estimation of feature-based forecast combinations”, J. of the Operational Research Society, pp. 1–15, Mar. 2021. [Online]. Available: https://doi.org/10.1080/01605682.2021.1880297

J. Ding, Z. Chen, L. Xiaolong, and B. Lai, “Sales forecasting based on catboost”, in 2020 2nd International Conference on Information Technology and Computer Application (ITCA), Guangzhou, China, Dec. 18–20, 2020. IEEE, 2020. [Online]. Available: https://doi.org/10.1109/itca52113.2020.00138

R. J. Hyndman and G. Athanasopoulos, Forecasting: Principles and Practice. OTexts, 2021.

Downloads

Published

2023-09-27

Issue

Section

COMPUTER SCIENCES AND INFORMATION TECHNOLOGIES