Semi-supervised Learning Based on Graph Stochastic Co-Training

Authors

  • Victor Sineglazov National Aviation University, Kyiv, Ukraine https://orcid.org/0000-0002-3297-9060
  • Serhii Yarovyi National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”

DOI:

https://doi.org/10.18372/1990-5548.77.18001

Keywords:

multiclass classification, semi-supervised learning, single-view co-training, stochastic label propagation

Abstract

This article is devoted to the development of a new approach in semi-supervised machine learning. The goal of this article is to analyze the accuracy of the single-view co-training system, based on the use of a modified graph-based stochastic label propagation algorithm for a multiclass classification problem. Graph transformation of data is preceded by feature decomposition, with three algorithms being compared: Singular Value Decomposition, Truncated Singular Value Decomposition, Iterative Primary Component Analysis, Kernel Primary Component Analysis. To improve the accuracy of the proposed method, additional parameter was included in the label propagation algorithm, allowing for the usage of the algorithm in co-training systems. Further performance increases are achieved via optimization of data modification, which is achieved by applying feature decomposition methods and parallelizing the calculation-heavy processes. As examples of practical use were considered solutions to the problem of multiclass classification for standard datasets of the library sklearn and for the real dataset Traffic Signs Preprocessed. Analyses of the results of the implementation of the proposed approach showed improvements in accuracy and of performance solving the multiclass classification problem.

Author Biographies

Victor Sineglazov , National Aviation University, Kyiv, Ukraine

Doctor of Engineering Science

Professor

Head of the Department of Aviation Computer-Integrated Complexes

Faculty of Air Navigation Electronics and Telecommunications

Serhii Yarovyi , National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”

Masters Student

Department of Artificial Intelligence

Institute for Applied System Analysis

References

R. E. Bellman, Dynamic programming. Princeton: Princeton University Press, 1957. p. ix ISBN 978-0-691-07951-6.

A. Blum and T. Mitchell, “Combining labeled and unlabeled data with co-training,” COLT' 98: Proceedings of the eleventh annual conference on Computational learning theory, July 1998, pp. 92–100, Madison, Wisconsin, United States, 24–26 July 1998, New York, New York, USA, https://doi.org/10.1145/279943.279962

Olivier Chapelle, Bernhard Schölkopf, and Alexander Zien, "Semi-supervised learning," MIT Press, 2006, pp. 193–205, ISBN:978-0-262-03358-9.

J. Chan, I. Koprinska and J. Poon, “Co-training with a Single Natural Feature Set Applied to Email Classification,” In proceeding Conference on Web Intelligence, Beijing, China, 2004.

K. Nigam and R. Ghani, “Analyzing the Effectiveness and Applicability of Co-Training,” In Proceeding of the 9th, International Conference on Information and Knowledge Management, McLean, Virginia, USA, 2000. https://doi.org/10.1145/354756.354805

Minmin Chen & Kilian Weinberger, “Automatic Feature Decomposition for Single View Co-training,” Proceedings of the 28th International Conference on Machine Learning, ICML 2011. 953–960.

W. Zhang and Q. Zheng, "TSFS: A Novel Algorithm for Single View Co-training," 2009 International Joint Conference on Computational Sciences and Optimization, Sanya, China, 2009, pp. 492–496, https://doi: 10.1109/CSO.2009.251.

U. N. Raghavan, R. Albert, S. Kumara, “Near linear time algorithm to detect community structures in large-scale networks,” Phys. Rev. E Stat. Nonlinear Soft Matter Phys. Rev., E76, 036106, 2007. https://doi.org/10.1103/PhysRevE.76.036106

X. Liu, T. Murata, “Advanced modularity-specialized label propagation algorithm for detecting communities in networks,” Phys. A: Stat. Mech. and Appl., vol. 389, pp. 1493–1500, 2012. https://doi.org/10.1016/j.physa.2009.12.019

J. Xie and B. K. Szymanski, “Community Detection Using a Neighborhood Strength Driven Label Propagation Algorithm,” In Proceedings of the 2011 IEEE Network Science Workshop, IEEE Computer Society, West Point, NY, USA, 22–24 June 2011, pp. 188–195. https://doi.org/10.1109/NSW.2011.6004645

G. Cordasco and L. Gargano, “Community detection via semi-synchronous label propagation algorithms,” In Proceedings of the IEEE International Workshop on Business Applications of Social Network Analysis, Bangalore, India, 15 December 2011, pp. 1–8. https://doi.org/10.1109/BASNA.2010.5730298

Chun Gui, Ruisheng Zhang, Zhili Zhao, Jiaxuan Wei, and Rongjing Hu, “LPA-CBD An Improved Label Propagation Algorithm Based on Community Belonging Degree for Community Detection,” Int. J. Mod. Phys. C, vol. 29, no. 02, 1850011, 2018. https://doi.org/10.1142/S0129183118500110

Yan Xing, Fanrong Meng, Yong Zhou, Mu Zhu, Mengyu Shi, and Guibin Sun, "A Node Influence Based Label Propagation Algorithm for Community Detection in Networks", The Scientific World Journal, vol. 2014, Article ID 627581, 13 p., 2014. https://doi.org/10.1155/2014/627581

X. K. Zhang, J. Ren, C. Song, J. Jia, and Q. Zhang, “Label propagation algorithm for community detection based on node importance and label influence,” Phys. Lett. A, vol. 381, Issue 33, pp. 2691–2698, 2017, https://doi.org/10.1016/j.physleta.2017.06.018

Huan Li, Ruisheng Zhang, Zhili Zhao, and Xin Liu, “LPA-MNI: An Improved Label Propagation Algorithm Based on Modularity and Node Importance for Community Detection,” Entropy, 23(5), 497. https://doi.org/10.3390/e23050497.

S. Gregory, “Finding overlapping communities in networks by label propagation,” New J. Phys., vol. 12, pp. 2011–2024, 2010, https://doi.org/10.1088/1367-2630/12/10/103018

J. Xie, B. K. Szymanski, and X. Liu, “SLPA: Uncovering Overlapping Communities in Social Networks via a Speaker-Listener Interaction Dynamic Process,” In Proceedings of the IEEE International Conference on Data Mining Workshops, Vancouver, BC, Canada, 11 December 2012, pp. 344–349. https://doi.org/10.1109/ICDMW.2011.154

Z. Song, X. Yang, Z. Xu and I. King, "Graph-Based Semi-Supervised Learning: A Comprehensive Review," in IEEE Transactions on Neural Networks and Learning Systems, vol. 34, no. 11, pp. 8174–8194, Nov. 2023, https://doi.org/10.1109/TNNLS.2022.3155478.

De-Ming Liang & Yu-Feng Li, “Lightweight Label Propagation for Large-Scale Network Data,” Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence Main track, 2018, pp. 3421–3427. https://doi.org/10.24963/ijcai.2018/475

Downloads

Published

2023-09-27

Issue

Section

COMPUTER SCIENCES AND INFORMATION TECHNOLOGIES