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Abstract—In order to classify skin lesions, many efforts have been made to create various automated
diagnostic systems. For that purpose many efforts have been put in creating various automated
diagnostics systems Nowadays, with the rapid advancements in deep learning, Vision Transformers have
emerged as powerful models for image processing and analysis purposes. This type of model has already
proved useful for cancer detection and classification tasks in particular. However, the complexity and
variability of skin lesions present significant challenges in accurately classifying them. Integrating the
concept of fractal dimension into Vision Transformers can potentially improve their performance by
capturing the intricate structural patterns of skin lesions. This paper aims to explore the integration of
fractal dimension metrics into a Vision Transformer for skin cancer classification. The problem at hand is
to investigate the integration of fractal dimension metrics into the existing Vision Transformer
architecture for the accurate classification of skin lesions as cancerous or non-cancerous. Fractal
dimensions provide a measure of the complexity and irregularity of an object, which can be informative
in characterizing skin cancer lesions. We aim to research possability and ways of incorporating fractal
dimension metrics into the Vision Transformer model for results improvements.

Index Terms—Machine learning; skin cancer; skin lesion classification; Vision Transformer; fractal

dimension; classification tasks.
I. INTRODUCTION

Skin cancer is a prevalent and widely diagnosed
disease worldwide, with its incidence increasing at
an alarming rate. However, it is important to note
that the true number of cases remains unknown, as
not all instances are reported to the dedicated
departments responsible for collecting statistical
data. The significance of early detection in
improving the chances of a full recovery cannot be
overstated. Therefore, there is a pressing need for
robust and accurate classification systems that aid in
the early detection and diagnosis of skin lesions
associated with cancer [1], [2].

In recent years, significant advancements in deep
learning techniques have paved the way for new and
promising models for image processing and analysis
tasks. Among these, the Vision Transformer (ViT)
has emerged as a highly potent model, showcasing
its effectiveness in various domains, including
cancer detection and classification. In fact, prior
research by one of the authors has already explored
the application of ViT in skin cancer classification,
demonstrating its potential [3].

While ViT has demonstrated superiority over
traditional approaches such as convolutional neural

networks (CNNSs), accurately classifying skin lesions
with high complexity and variability remains a
challenging task. To address this, we propose the
integration of an additional metric, specifically the
concept of fractal dimension, into the ViT
architecture. Fractal dimension serves as a valuable
measure of complexity and irregularity in objects,
offering the potential to capture the intricate
structural patterns inherent in skin lesions.

Skin lesions exhibit fractal properties, and their
self-similarity can be quantified using fractal
dimension. By incorporating fractal dimension
metrics into the ViT model, we aim to enhance its
performance in skin cancer classification tasks. This
research aims to investigate three different
approaches for integrating the fractal dimension of
skin lesions into the Vision Transformer.

Through this study, we seek to contribute to the
advancement of automated diagnostics systems for
dermatological diseases, specifically in the context
of skin cancer classification. By exploring the
integration of fractal dimension metrics into the ViT
model, we aim to pave the way for more accurate
and reliable early detection systems, ultimately
leading to improved patient outcomes and a greater
chance of successful treatment.
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II. VISION TRANSFORMER

Vision Transformer (ViT) is a deep learning
architecture that has gained significant attention in
the field of computer vision that was first introduced
in the paper “An Image is Worth 16x16 words:
Transformers for Image Recognition at Scale” [3]. It
represents a  departure  from  traditional
Convolutional Neural Networks (CNNs) by utilizing
a transformer-based model, originally introduced for
natural language processing (NLP) tasks, and
applying it to image data. ViT has shown impressive
performance on various visual recognition tasks,
including image classification, object detection, and
segmentation. In this description, we will delve into
the workings of ViT, its key components, and its
advantages over traditional CNN-based models. The
transformer architecture, initially proposed for
sequence tasks like machine translation, consists of
an encoder-decoder framework with self-attention
mechanisms. To apply the transformer architecture
to images, ViT divides an input image into a
sequence of fixed-size patches, treating them as
tokens similar to words in NLP. Each patch is then
linearly projected into a lower-dimensional
representation known as embeddings. These
embeddings, along with positional encodings, are
fed into the transformer encoder [3].

The core idea behind transformers is self-
attention, a mechanism that allows the model to
weigh the importance of different positions within
the input sequence. This attention mechanism
enables the model to focus on relevant parts of the
input and effectively capture global dependencies.
Self-attention is a mechanism that computes
attention weights for each position in the input
sequence based on its relationships with all other
positions. Multi-head attention, a variation of self-
attention, performs multiple attention operations in
parallel. This allows the model to capture different
types of relationships and learn more diverse
representations [4].

The final hidden states of the transformer
encoder are used for classification. A simple linear
layer is appended on top of the encoder to map the
learned representations to class probabilities. During
training, the model is optimized to minimize a
suitable loss function, such as cross-entropy, based
on the predicted probabilities and ground-truth
labels.

III. FRACTAL DIMENSION

Fractals are complex mathematical objects that
exhibit self-similarity across different scales. Fractal
dimension is a measure that quantifies the level of

complexity and intricacy within a fractal. Fractals
can be found in various natural and man-made
phenomena, such as coastlines, clouds, trees, and
even financial markets. They possess unique
properties that make them intriguing for studying
and understanding complex systems. The idea of
fractal dimension emerged from the need to measure
and characterize the intricate structure of fractals.
Unlike traditional geometric objects, which have
integer dimensions (e.g., a line has dimension 1, a
plane has dimension 2), fractals exhibit non-integer
dimensions [5].

The concept of fractal dimension can be
explained by considering the relationship between
the scale at which we observe a fractal and the level
of detail we can perceive. As we zoom in on a
fractal, we discover smaller copies of the overall
pattern, repeating itself in a self-similar manner. The
fractal dimension quantifies the extent of this self-
similarity across different scales [6].

There are several methods to calculate the fractal
dimension of a given object or dataset. One
commonly used method is the box-counting
technique. In this approach, we cover the fractal
with a grid of equally sized boxes and count the
number of boxes that intersect with the fractal. By
varying the size of the boxes, we can observe how
the number of intersecting boxes changes. The
fractal dimension is then determined by analyzing
the scaling relationship between the box size and the
number of intersecting boxes.

In this article we try to use a box-counting
method for calculating fractal dimension on skin
lesions dataset and wuse this metric for an
improvement of classification results we’re getting
using specific architecture of a ViT.

IV. DATASET

Dataset HAM10000 was used for training the
model. The dataset, available on Harvard Dataverse,
comprises 10000 skin lesions [7]. To ensure
balanced training and evaluation, we implemented a
data splitting strategy based on the "cancer — not
cancer" criteria. Recognizing the significance of
addressing imbalanced classes, we carefully
structured the training set by selecting a
proportionate number of samples from each group.
This approach allowed the model to learn from a
diverse range of cases while maintaining equal
representation of both classes.

The concrete steps taken for images
preprocessing are resize to 100x100 and
normalization. For fractal dimension calculation
images we converted the images to grayscale,
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applied a Gaussian blur to the grayscale image using
a kernel size of (3, 3). This blurring operation helped
to reduce noise and smooth out irregularities in the
image, resulting in a cleaner representation. After
that we applied canny edge detection — an image
processing technique that identifies and extracts the

a)

edges of objects within an image based on intensity
gradients [8] (Fig. 1). The lower and upper

thresholds were determined based on the calculated
minimum, mean, and maximum values of the
grayscale image.

Fig. 1. Image from HAM1000 [5] dataset: (a) before and (b) after preprocessing for fractal dimension calculation

V. CALCULATION OF THE FRACTAL DIMENSION

The box counting method also known as
Minkowski—Bouligand dimension is a technique
used to estimate the fractal dimension of an object
by measuring the number of boxes required to cover
the object at different scales or resolutions. For
instance, when applied to the British coastline, the
box counting method involves progressively
dividing the coastline into smaller boxes and

a)

Fig. 2. Application of Minkowski—Bouligand dimension on Britain coastline with box sizes (a) —2; (b) —4; (¢) — 8

VI. USED MODEL ARCHITECTURES

Skin cancer classification using the ViT
architecture has shown promising results, as
demonstrated in a previous publication titled "Vision
Transformer for Skin Cancer Classification" [9].
This model utilizes an improved attention function,
which enhances the detection of skin lesion edges.

counting the number of boxes needed to cover it at
each scale, revealing the self-similar nature of the
coastline and providing an estimation of its fractal
dimension, which characterizes its intricate and
complex structure at different levels of
magnification [5].

It was chosen as the one that takes R input by
default, quick to implement and shows significant
quality of the results (Fig. 2).

b) ©)

However, further improvements are required to
enhance the performance of the ViT model by
incorporating the fractal dimension metric.

In this work, we aim to introduce enhancements
to the existing ViT architecture by integrating the
fractal dimension metric. The fractal dimension
provides valuable information about the intricate
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structures present in skin lesions, which can aid in
accurate classification. To effectively compare the
performance of these architectures, we also trained a
model without the integration of fractal dimension,
referred to as CancerViT.

We considered and tested 3 options of adding
fractal dimension into the model. First is to add it as
a patch class at the stage of patch linearization. This
model will be referenced as PatchFDViT. That way
we treat fractal dimension as part of the original

image. As for the second architecture, we’ve added a
fractal dimension in the transformer itself, in every
layer. It’s going to be called AttentionFDViT. It
should specifically emphasize the weight of this
metric for the attention function. In the third and
final model we’ve added fractal dimension as
additional input for the classification layer itself.
The name of this model will be ClassFDViT.
Therefore it’s treated as a completely separate metric
(Figs 3 and 4).
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Fig. 3. Architecture of ViT model specified for skin cancer classification [9]
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Fig. 4. Three considered alternatives of integrating the fractal dimension into the mode

VII. RESULTS

In evaluating the performance of our
classification models, we employ two metrics for
comparison. The first metric is accuracy, which
serves as a general measure of the model's overall
classification quality. However, considering the

medical nature of the task at hand, our primary focus
lies in minimizing the occurrence of type 2 errors, as
the cost of misclassifying cancerous lesions for
patients is considerably higher than the reverse
scenario.

To address this concern, we introduce the False
Negative Rate (FNR) as our second metric. The



V.O. Nikitin, V.Y. Danilov

Integration of Fractal Dimension in Vision Transformer for Skin Cancer Classification 19

FNR quantifies the proportion of actual positive
instances (cancerous lesions) that are incorrectly
classified as negative (non-cancerous). It is
computed by dividing the number of false negatives
by the sum of false negatives and true positives.

By incorporating the FNR metric into our

evaluation, we aim to assess the model's
performance  specifically in  reducing the
misclassification of cancerous lesions. This

approach ensures that our analysis accounts for the
critical aspect of minimizing false negatives, which
directly impacts patient outcomes and prevents
potential delays in diagnosis and treatment.

As can be seen from Table I only PatchFDViT
showed worsening of the both metrics compared to
CancerViT. ClassFDViT outperformed CancerViT
by FNR and AttentionFDViT showed both metrics
increased.

TABLE I RESULTS OF THE LEARNING
Model Name Accuracy, % | FNR, 0-1
CancerViT 78.14 0.32
PatchFDViT 76.05 0.39
AttentionFDViT 79.04 0.23
ClassFDViT 78.14 0.27

VIII. CONCLUSIONS

Among the three considered architectures, two of
them exhibited noteworthy improvements in
performance, while the remaining architecture, along
with the control model, did not show any substantial
enhancement. Notably, the architectures that
integrated the fractal dimension metric demonstrated
noticeable improvements in the evaluation metrics.

These findings indicate that the inclusion of the
fractal dimension of skin lesions within the attention
layers of the model plays a crucial role in improving
the quality of skin cancer classification when using
vision transformers. By leveraging the informative
nature of fractal dimension measurements, the model
becomes more adept at capturing and interpreting
the intricate structural patterns inherent in skin
lesions. Consequently, this integration enhances the
model's ability to accurately classify skin lesions as
cancerous Or non-cancerous.

IX. FUTURE INVESTIGATIONS

This work opens up several promising directions
for future research and enhancement. Here are a few
examples:

Firstly, it is essential to explore different
approaches for measuring the fractal dimension of
skin lesions, including machine learning-based
methods. This is crucial because the precise

determination of lesion boundaries can sometimes
be subjective, leading to variations in results. By
employing alternative preprocessing and measuring
techniques, we can potentially obtain different
fractal dimension measurements, improving metrics.

Secondly, in this study, a specific ViT
architecture with a predetermined set of parameters,
known for its effectiveness in skin cancer
classification, was utilized. However, for further
advancements, it is necessary to consider other
variations of ViT architectures with different
parameter settings. It is plausible that an architecture
specifically tailored to integrate the fractal
dimension metric may yield even higher
performance. For example, CrossViT [10] is similar
to the model used in this paper and may also be
effective and perform the task.

In summary, the research topic of integrating
fractal dimension into Vision Transformers for skin
cancer classification presents numerous avenues for
further exploration and improvements. Investigating
alternative measurement approaches and exploring a
broader range of ViT architectures with different
parameter configurations can potentially uncover
novel insights and lead to enhanced performance in
accurately classifying skin lesions. There is ample
scope for future discoveries and advancements in
this field.
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B. O. Hikitin, B. $I. JanunoB. Interpamis d¢pakranbHoi po3MipHOcTi y BidyanabHuii Tpancdopmep ais
kiacudikamii paky mkipu

3 wMeroro kiacu(ikamii ypakeHb IIKIpH Oyno 3poOjgeHO 0arato 3yCWib ISl CTBOPEHHS Pi3HOMAaHITHHX
aBTOMAaTHU30BaHUX CHCTEM JIarHOCTHKU. Ha chOromHIilHii JeHp, 31 CTPIMKHMU JIOCSTHEHHSIMH Y INTMOOKOMY HaBYaHHI,
Bi3yallbHI TpaHC(hOpPMEpH BUXOIATh Ha MEPEIHIN IJIaH SK MOTYXHI MOAeNi a1t 00poOKH Ta aHaiizy 300paxkenb. Lleit
TUT MOJEJICH BXKE JTOBIB CBOIO KOPHCHICTH JUIS BHUSBJCHHS Ta Kiacu(ikallii pakOBUX 3aXBOpIOBaHb 30kpema. OHaK,
CKJIQJIHICTD 1 3MIHHICTh Ypa)keHb HIKIPU CTBOPIOIOTH 3HAYHI BUKIIMKH IPH TOYHIN Kiacudikamii. [HTerparis koHuenmii
(pakTasbHOI PO3MIPHOCTI Y Bi3yalbHi TpaHCPOPMEPH MOXKE ITOKPAIIUTH IXHIO MPOAYKTHBHICTb, 3aXOILTIOI0YH CKIIaJIHI
CIPYKTYpHi 3pa3Ku ypaxeHb wKipy. Meroro wiei poboTH € AOCIIUKEHHS IHTerpaLlii METPUK (ppaKTaibHOI pO3MIPHOCTI
y BisyanbHuii Tpancpopmep st kiacupikauii paky mkipu. [Ipobiema, siky HeoOXiAHO JOCTIIUTH, IIONATa€ Y BUBYCHHI
MOXIIUBOCTI 1 CIOCO0IB 1HTerpau11 METPHUK ()PaKTaibHOI PO3MIPHOCTI y ICHYIOYY apXiTEKTypy Bi3yallbHOIO
TpaHcdopmepa it TOYHOI Kiacudikamii ypakeHp WIKIpU SIK PakoBUX a0o HepakoBux. DpakTaibHi pO3MipHOCTI
HA/IAI0Th Mipy CKJIaJHOCTI Ta HEMPABUIILHOCTI 00’ €KTa, 0 MoXxe OyTH iH(pOPMAaTHBHUM IIPH XapakTepu3alil ypakeHb
LIKipH, MOB’sI3aHUX 3 pakoM. [InaHyeTbCs JOCTIANTA MOXKIIMBOCTI Ta IIIISX.

KirouoBi cioBa: MamMHHE HABYaHHS;, paK IIKipW; KiIacH(ikalis MyXJWH IIKIpH, Bi3yalbHUA TpaHchopmep;
(pakraspHa pO3MIpHICTb; 3aj1a4i KiIacudikaii.
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