LV. Zakutynskyi Finding the Optimal Number of Computing Containers in IoT Systems:

Application of Mathematical Modeling Methods

COMPUTER SCIENCES AND INFORMATION TECHNOLOGIES

UDC 621.382.2 (045)
DOI:10.18372/1990-5548.76.17661

I. V. Zakutynskyi

FINDING THE OPTIMAL NUMBER OF COMPUTING CONTAINERS IN IOT SYSTEMS:

APPLICATION OF MATHEMATICAL MODELING METHODS

Faculty of Air Navigation, Electronics and Telecommunications,
National Aviation University, Kyiv, Ukraine
E-mail: ihor.zakutynskyi@nau.edu.ua ORCID 0000-0003-2905-3205

Abstract—The integration of computing containers into Internet of Things (loT) systems created a lot of
challenges and opportunities in the connected devices and cloud computing industries. In this paper, the
author proposed a mathematical modeling method to analyze and optimize the deployment of computing
containers into an loT-based ecosystem. By implementing mathematical modeling techniques, such as
queuing theory, optimization algorithms, and statistical analysis, we aim to address key concerns related
to resource allocation, workload distribution, and performance optimization. Proposed models take the
dynamic nature of an loT system, considering factors such as real-time data streams and varying
workloads for the satisfaction of scalability requirements. The author aids in identifying the optimal
placement strategies for computing containers, ensuring efficient resource utilization and workload
balancing across the loT network.

Index Terms—Internet of Things; cloud computing; computing containers; mathematical modeling;

performance optimization; resource allocation.
I. INTRODUCTION

In recent years, the integration Internet of Things
(IoT) solutions has revolutionized various domains,
ranging from smart homes and healthcare to industrial
automation and transportation. These systems consist
of interconnected devices, sensors, and actuators that
generate massive amounts of data. [oT systems
require efficient and scalable architectures to handle
the increasing complexity and heterogeneity of
devices. IoT devices generate an enormous amount
of data, requiring efficient and scalable computing
solutions. Computing containers, such as Docker and
Kubernetes, have emerged as promising technologies
for managing and deploying applications in I[oT
systems. These containers encapsulate software
components along with their dependencies, providing
isolation, portability, and scalability.

To effectively design and optimize [oT systems
that employ computing containers, it is crucial to
develop mathematical models that capture their
behavior and performance characteristics.
Mathematical modeling enables us to analyze and
understand the intricate interactions between IoT
devices, the underlying network infrastructure, and
the computing containers that orchestrate the
system's computational tasks.

The objective of this paper is to present some
mathematical modeling methods for computing
containers in the context of IoT systems. By

leveraging mathematical techniques, we aim to
address critical challenges associated with resource
allocation, task scheduling, energy consumption, and
performance optimization.

In this study we will focucs on the key factors
influencing the performance of computing
containers, including resource utilization, task
latency, and scalability.

Proposed models will consider parameters such
as the number of containers, available resources,
network bandwidth, and the characteristics of the
underlying IoT devices. Also, we will analyze the
advantages and limitations of the mathematical
modeling approach for improving the efficiency and
scalability of computing containers in IoT-based
systems.

II. PROBLEM STATEMENT

The deployment and management of computing
containers in IoT systems give rise to several critical
challenges that need to be addressed. These
challenges include.

A. Resource Utilization and Scalability

IoT systems typically consist of a large number
of resource-constrained devices with varying
computational capabilities. Optimally allocating
computing resources to containerized applications in
such systems is crucial to ensure efficient utilization
and scalability. However, determining the optimal

©National Aviation University, 2023
http://jrnl.nau.edu.va/index.php/ESU, http://ecs.in.ua

10 ISSN 1990-5548 Electronics and Control Systems 2023. N 2(76): 9-14

resource allocation strategy requires a
comprehensive understanding of the system
characteristics and the behavior of containerized
applications. Mathematical modeling techniques can
provide insights into resource requirements,
workload patterns, and scalability considerations,
thereby enabling efficient resource utilization.

B. Performance Analysis and Optimization

Containerized IoT applications often need to
meet stringent performance requirements, such as
low latency and high throughput, to ensure timely
data processing and decision-making. However,
predicting and optimizing the performance of
containerized applications in complex IoT
environments is a challenging task. Mathematical
models can capture the dynamics of application
performance, allowing to analyze and optimize key
performance metrics, such as response time,
throughput, and resource utilization.

C. Workload Characterization

Understanding the workload characteristics of
IoT applications is crucial for effective resource
management and performance optimization. IoT
workloads are typically heterogeneous, dynamic,
and unpredictable, making it challenging to capture
their behavior accurately. Mathematical modeling
techniques, such as stochastic modeling and queuing
theory, can aid in characterizing IoT workloads,
enabling the estimation of resource requirements and

the identification of potential performance
bottlenecks.

D. Container Placement and Scheduling
Determining the optimal placement and

scheduling of containerized applications in IoT
systems is critical for efficient resource utilization
and load balancing. The placement and scheduling
decisions must consider factors such as network
connectivity, computational capabilities of devices,
and application dependencies. = Mathematical
optimization algorithms can assist in finding optimal
or near-optimal solutions to the container placement
and scheduling problem, taking into account various
constraints and objectives.

III. THE LITERATURE REVIEW

In recent years, researchers have proposed many
mathematical models to study computing containers
behavior. These models consider parameters such as
computing resource allocation, workload distribution,
and deployment strategies. Some studies [1] — [4]
focus on optimizing resource allocation strategies
based on workload characteristics and client's (IoT
devices in our case) capabilities.

Others investigate the impact of container
migration and orchestration policies on system
performance overall. For example, in this paper
"Mathematical model for searching the optimal
resources size for the virtual service node" [5]
authors provide a mathematical model for
calculating the optimal size of computing resources,
such as CPU, memory, etc, based on the architecture
of cloud computing.

Also, in cloud computing environments, database
systems hold a significant position as a crucial class
of services. The performance optimization for
database resources is proposed in this paper [2]
"Mathematical model for higher utilization of
database resources in cloud computing”. The author
provides an approach based on mathematical
formulation and linear programming methodology to
optimize database performance.

Another important research topic is mathematical
models for evaluating and ensuring security for
cloud computing systems. In this study "A
Mathematical Model for Securing Cloud
Computing" [3] the authors provide solutions based
on mathematical modeling methods for cloud
security framework.

This research employed simulation-based
approaches, mathematical analysis, and empirical
evaluations to validate the proposed models.

IV. COMPUTING CONTAINERS SCALING

Computing containers operate as a higher-level
abstraction within the application layer, facilitating
the bundling of code and its associated dependencies.
With the ability to execute numerous containers on a
single machine while sharing the operating system
(OS) kernel, each container functions autonomously
as an isolated process within the user space. In
contrast to virtual machines (VM), containers exhibit
reduced space requirements, with container images
typically spanning tens of megabytes (MB) in size.
This compactness enables containers to
accommodate a larger number of applications while
necessitating fewer VM and operating systems,
thereby optimizing resource utilization. This is
particularly useful in IoT systems where multiple
applications or services need to run on the same
device without conflicts.

In Figure 1 are listed typical schemes for
containerized applications.

For simplicity, this scheme is presented for a
one-server system, but also containers can be
distributed between several physical machines for
horizontal scaling. Figure 2 gives a general scheme
for an [oT system with distributed and containerized
applications.

LV. Zakutynskyi Finding the Optimal Number of Computing Containers in IoT Systems:
Application of Mathematical Modeling Methods 11

| Application 1 | Application 2 | Application N

Container Engine Container Engine Container Engine

#l Operation System [l Operation System |l Operation System [

Hypervisor

Physical Server

Fig. 1. Containerized Application Scheme

Load
Balancer

Container N

Fig. 2. IoT system with distributed computing containers

Finding the optimal number of computing
containers for an IoT system involves determining
the right balance between resource utilization and
system performance. Below are listed methods for
optimal container number finding based on Queuing
theory and the Stochastic model. Also, proposed a
new method based on the Mixed Integer Linear
Programming (MILP) model.

A. Queuing theory-based method

In this section, presented a mathematical model
based on queuing theory for analyzing the scaling of
computing containers in IoT systems. This model
aims to evaluate the impact of scaling the number of
containers on system performance, including
response time and resource utilization.

oy w
B=[1+5J —[“L(EJN(L

Based on (1), the probability of no requests in the
system (F,) can be calculated by substituting i = 0.

This formula provides the probability of having zero
requests in the system. It serves as a key parameter
for evaluating the performance metrics of the
queuing system, such as the average number of
requests in the system and in the queue, as well as
the average waiting time in the system and in the
queue.

In the algorithm, the arrival rate is provided as an
input to the scaling analysis. It is used in conjunction
with the service rate (u) and the number of
computing containers (N) to calculate performance
metrics such as the average number of requests in
the system (L), the average number of requests in the
queue (Lg), the average waiting time in the system
(W), and the average waiting time in the queue (W).

By analyzing the impact of different arrival rates
on the system performance, we can determine the

12 ISSN 1990-5548 Electronics and Control Systems 2023. N 2(76): 9-14

optimal number of computing containers required to
handle incoming requests efficiently, ensuring that
desired performance targets are met.

Input:
A — arrival rate.
u —service rate of a single container.
N — number of computing containers.

Output:
L — average number of requests in the system.

L, —average number of requests in the queue.
W — average waiting time in the system.
W, —average waiting time in the queue.

1)' Calculate the service rate of a single
container:
pet, @)
S
where S is the average service time.
2) Calculate arrival rate:
L
A T 3)

3) Calculate probability of no requests in the
system:

Py, based on (1). 4)

4) Calculate average number of requests in the
system:

A
p—A

L«

x Py 5)

5) Calculate average number of requests in the
queue:

}\‘2
L, ————xF, (6)
H(p—2)
6) Calculate average waiting time in the system:
L
W é—. 7
. (7
7) Calculate average waiting time in the queue:
L‘]
W, < o ®)

In this algorithm, p refers to the rate at which a

single computing container can process requests in
the current IoT system state. It represents the
average number of requests per unit of time that a
single container can handle. This is an essential

parameter in the queuing theory. It helps determine
the capacity and efficiency of the computing
containers in processing incoming requests.

By varying the number of containers (&) and
observing the corresponding changes in performance
metrics, we can analyze the impact of scaling on the
system’s ability to handle incoming application
requests. This analysis can provide insights into the
optimal number of containers required to achieve
desired performance targets, balancing resource
utilization and response time.

B. Stochastic model-based method
Let X(¢) denote the state of the system at time

t, representing the number of active computing
containers. The system can have a finite number of
states, ranging from 0 to N, where N is the maximum
number of containers. The state transitions occur
based on arrival and departure rates of requests, and
can be modeled using Markov chains.

The transition rates, denoted as a,;, represent

the probability of transitioning from state i to state ;.
These rates can be modeled using suitable stochastic
models such as Poisson processes. By constructing
the transition rate matrix A, with elements a, ; the

system behavior can be analyzed.

The steady-state probabilities of the Markov
chain, denoted as = [ny, @y, . . . , Wy |, represent the
probabilities of being in each state. These
probabilities satisfy the equation @ - A = 0, subject

o . N
to the normalization condition Zi:O n, =1.

Solving this system of equations provides
insights into the behavior of the system, such as

container utilization, system throughput, and
resource allocation.
Using the steady-state probabilities,

performance metrics can be derived to evaluate the
system’s behavior. Metrics such as the average
number of containers, average waiting time, and
system throughput can be calculated based on steady-
state probabilities and transition rates (Fig. 3).

C. MILP model-based method

Below we provide formulation of the problem as
a mathematical optimization model, specifically a
mixed-integer linear programming (MILP) problem.
The objective function and constraints are defined to
express the optimization problem, where the
objective is to minimize the number of computing
containers while satisfying the processing
requirements and the communication rate constraints

(Fig. 4).

LV. Zakutynskyi Finding the Optimal Number of Computing Containers in IoT Systems:

Application of Mathematical Modeling Methods

13

Algorithm 1 Containers Scaling Model

Input: N, A, u

for i =0to N do
for 7 =0to N do
if ¢ = j then
aij < —(A+ip)
else if j =i+ 1 then
Qi < A
end if
end for
: end for

el el
AW N RO

Output: Steady-state probabilities 7; for 0 <i < N
Construct the transition rate matrix A with size (N +1) x (N + 1)

: Solve 7 - A = 0 subject to SN 7w = 1
: Return Steady-state probabilities 7; for 0 <i < N

Fig. 3. Containers Scaling model based on stochastic model

Algorithm 2 Optimal Number of Computing Containers

Output: S
Set S+ 1

while M > D do

000 S 3 gk G e

>—
2

: end while
12: return S

—
—

Input: N, P, 7T, C, R, CPU, M

Calculate total workload demand: D + == Z?;l P
Assign ToT devices to containers

Calculate maximum workload demand: M < max {% Zi\;l Pi}

Increase number of containers: S «+ S+ 1
Update workload demand: D + &= Zj\il P

Calculate maximum workload demand: M <« max{ % Zfil Pi}

Fig. 4. Optimal Number of Computing Containers Based on Connected IoT Devices

Input:

N —total number of [oT devices.

P; — processing requirement of device i,

v, e[l,N].

T — communication rate.

C — capacity of a single computing container.

CPU — Number of CPUs in computing container.

M — available memory in each container.
Output:

S — total number of computing containers.
V. CONCLUSIONS

Proposed mathematical model provides a
straightforward and intuitive approach to determine
the optimal number of computing containers for an
IoT system.

Model can handle varying numbers of devices
and their processing requirements, making it
adaptable to different system configurations.

A. Advantages of the proposed method

1) Resource-aware: The model takes into
account the specific parameters of the computing
containers, such as RAM, number of CPUs, and
memory, ensuring that the resource constraints of
the containers are respected.

2) Quick estimation: The iterative improvement
approach allows for a relatively quick estimation of
the optimal number of containers, which can serve
as a starting point for resource allocation decisions.

B. Disadvantages of the proposed method

1) Heuristic nature: The model uses an iterative
improvement approach, which may not guarantee
finding the globally optimal solution. The solution
obtained may be suboptimal or near-optimal
depending on the workload distribution and resource
constraints.

2) Sensitivity to initial conditions: The
performance of the algorithm can be sensitive to the

14 ISSN 1990-5548 Electronics and Control Systems 2023. N 2(76): 9-14

initial number of containers chosen. Starting with an
inappropriate initial number of containers may lead to
a longer convergence time or suboptimal solutions.

Overall, while this method provides a practical
and resource-aware approach for determining the
optimal number of computing containers, it is
important to consider its heuristic nature and
potential limitations when applying it to real-world
IoT systems with varying requirements and
constraints. Further analysis and refinement may be
necessary to obtain more precise solutions or to
incorporate additional factors specific to the system's
requirements.

REFERENCES

[1] X. Zou, “Research on cloud computing task
scheduling based on calculus mathematical
equation,” In Highlights in Science, Engineering and
Technology, vol. 9, 2022, pp. 218-226. Darcy & Roy
Press Co. Ltd. https://doi.org/10.54097/hset.v9i.1779

[2] P. R. Kaveri, & P. Lahande, “Reinforcement
Learning to Improve Resource Scheduling and Load
Balancing in Cloud Computing,” In SN Computer
Science, vol. 4, Issue 2, 2023. Springer Science and
Business Media LLC.

[3] R. Tasneem, & M. A. Jabbar, “An Insight into Load
Balancing in Cloud Computing," In Proceeding of
2021 International Conference on Wireless
Communications, Networking and Applications,
2022, pp. 1125-1140. Springer Nature Singapore.
https://doi.org/10.1007/978-981-19-2456-9 113

[4] R. Alakbarov, “An Optimization Model for Task
Scheduling in Mobile Cloud Computing,” In
International Journal of Cloud Applications and
Computing, vol. 12, Issue 1, pp. 1-17, 2022. 1GI
Global. https://doi.org/10.4018/IJCAC.297102

[5] M. Skulysh, “Mathematical model for searching the
optimal resources size for the virtual service node,”
Advanced Information Systems, 2(2), 2018, pp. 30—
34. https://doi.org/10.20998/2522-9052.2018.2.05

[6] P.R. Kaveri, & V. Chavan, “Mathematical model for
higher utilization of database resources in cloud
computing,” In 2013 Nirma University International
Conference on Engineering (NUICONE). 2013
Nirma University International Conference on
Engineering (NUICONE), IEEE, 2013.
https://doi.org/10.1109/NUiCONE.2013.6780095

[7] Zico Mutum, A Mathematical Model for Securing
Cloud Computing, 2015.

Received March 09, 2023

https://doi.org/10.54097/hset.v9i.1779

Zakutynskyi Thor. ORCID 0000-0003-2905-3205. PhD student.

Radio Electronic Devices and Systems Department, Faculty of Air-navigation, Electronics and Telecommunications,
National Aviation University, Kyiv, Ukraine.

Education: National Aviation University, Kyiv, Ukraine, (current time).

Research area: neural networks, software architecture, automation systems, cloud computing, IoT systems.

Publications: 7.

E-mail: ihor.zakutynskyi@nau.edu.ua

I. B. 3akyruHcbknil. Bu3HayeHHSI ONTHMAJIBHOI KiJBKOCTI 004YMCIIOBATBHUX KOHTeiiHepiB B cHcTeMax
InTepHeTy peueii: 3acToCyBaHHSI METOAIB MATEMATHYHOTO MO/IEJTIOBAHHSI.

[HTerpaniss oOuucHIOBaIbHUX KOHTeWHepiB y cucremu IHTepHery pederr (IoT) crBoproe 06arato MOXIHUBOCTEH,
BOJHOYAC 0araTo BUKIMWKIB JUIS 1HAYCTpii PO3YMHHX INIPUCTPOIB, a TaKoX ISl Tally3i CEPBEPHUX Ta XMapHHUX
TeXHONOTii. BaxxMBUM 3aBIaHHIM € BUOIp ONTHMABHOI KUTBKOCTI OOYHMCITIOBAILHUX PECYPCIB, @ TAKOXK MOXJIUBICTH
ix amanrarii 70 podo4oro HaBaHTaXKEHHsI. Y il CTATTi MPONOHYETHCS MiAXi Ha OCHOBI MaTEMAaTUYHOT'O MOJICITIOBAHHS
JUISL aHaJIi3y Ta ONTUMI3allii pecypciB OOUHCITIOBAIEHUX KOHTeHHepiB y cuctemax loT. BukopucToBytoun MmaremMaTnyHi
METO/IH, TaKi SIK TEOpisi MaCOBOr0 OOCIyrOBYBaHHsI, alTOPUTMH ONTUMI3allii Ta CTATUCTUYHHUN aHalli3, 3aIIpOIIOHOBaHa
MOJIeITi JUT PO3B'sI3aHHSA MPoOJIeM TMOB’s3aHUX 13 PO3MOIITIOM PECypCiB, a TAKOX BH3HAUCHHS ONTHMAJBHOI KiJTBKOCTI
aKTHMBHUX OOYHCITIOBAJHHUX KOHTEWHEpPIB. 3alporoHOBaHI MOJeNi BpaXxOBYIOTh JHUHaMi4Hy mpupoay cucreMm loT, a
OT)KE€ BPAaxOBYIOUM Taki ()aKkTOpH, SK MOTOKM IaHUX y PEeaJbHOMY dYaci, 3MiHy poOOYOro HaBaHTA)KEHHS, a TaKOXK
BpPaxoBYIOTh BHMOTH JO MaclmTaboBaHOCTI. BIpoBa/pkeHHs 3anpolTOHOBAaHUX MOJENEH [03BONUTH 3a0e3NEeYUTH
eeKTUBHE BUKOPUCTAHHS O0YKMCITIOBAJIBHUX PECYPCIB, a TAKOXK 3a0e3NMeYnTH OajJaHCyBaHHS pOOOYOro HaBAaHTAKEHHS
B cucTeMax [HTepHeTy peueil.

Karwoudosi cioBa: iHTepHeT peueii; XMapHi OOYHCIIEHHS; OOYHMCITIOBAJIbHI KOHTEHHEPH; MaTeMaTHUYHE MOJEITIOBAHHS;
OINTUMI3allis TPOIYKTUBHOCTI; PO3IOALI PECYpPCiB.

3akyruncbkuii Irop Bosogumuposua. ORCID 0000-0003-2905-3205. AcmipaHT.

Kadenpa enexTpoHiku, poOOTOTEXHIKM 1 TEXHOJOriH MOHITOpUHTY Ta [HTepHeTy peueil, DakymbTeT aepoHaBiraiii,
EJIEKTPOHIKM Ta TeJIeKOMyHiKalii, HarioHanpHuMiA aBialiiiHuid yHiBepcuTet, KuiB, Ykpaina.

Ocsirta: HanionanpHuit aBianiinuii yHiBepcuter, Kuis, Ykpaina, (2019).

HampsiMm HaykoBOI AisZIbHOCTI: HEWPOHHI Mepexki, apXiTeKTypa MPOrpaMHOro 3a0e3IeueHHs, CHCTEMH aBTOMAaTH3allii,
XMapHi OOYUCIICHHSI, CHCTEMH IHTEPHETY peucii.

Kinpkicts myoOmikarii: 7.

E-mail: ihor.zakutynskyi@nau.edu.ua

