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Abstract—The article considers a new approach to constructing a support vector machine with semi-
supervised learning for solving a classification problem. It is assumed that the distributions of the classes 
may overlap. The cost function has been modified by adding elements of a penalty to it for labels not in 
their class. The penalty is represented as a linear function of the distance between the label and the class 
boundary. To overcome the problem of multicriteria, a global optimization method known as continuation 
is proposed. For a combination of predictions, it is suggested to use the voting method of models with 
different kernels. The Optuna framework was chosen as the tool for configuring hyperparameters. The 
following were considered as training samples: type_dataset, banana, banana_inverse, c_circles, 
two_moons_classic, two_moons_tight, two_moons_wide.  

Index Terms—Support vector machine; semi-supervised learning; multi-class classification; 
multicriteria; method of global optimization. 

I. INTRODUCTION 

Support Vector Machine (SVM) it is one of the 
most effective machine learning methods used to 
solve classification and regression problems, widely 
used in many fields, including computer vision, 
natural language processing, bioinformatics, and 
others. 

An important property of support vector 
machines is that the determination of model 
parameters corresponds to a convex optimization 
problem, and therefore any local solution is also a 
global optimum. 

This method is based on finding the hyperplane 
in the feature space that best separates the two 
classes of data. The main idea of the method is the 
translation of the original vectors into a higher-
dimensional space and the search for a separating 
hyperplane with the largest gap in this space. Two 
parallel hyperplanes (support vectors) are built on 
both sides of the hyperplane that separates the 
classes. The separating hyperplane will be the 
hyperplane that creates the greatest distance to two 
parallel hyperplanes. The algorithm is based on the 
assumption that the greater the difference or distance 
between these parallel hyperplanes, the smaller the 
average classifier error will be. 

The special property of the support vector 
machine is the continuous decrease in the empirical 
classification error and the increase in the gap, so the 

method is also known as the maximum gap 
classifier method. 

ІІ. FORMALIZATION OF THE METHOD SVM 

Let's enter the notation. In general, the problem is 
solved for which class labels can take values Y = {–1, 
+1}. The object is a vector with n features 

1 2( , , , )nx x x x   in space nR . During training, the 
algorithm must build a function ( ) ,F x y  which 
takes an argument х (object in space nR ) and returns 
the label of the class y. 

The main purpose of SVM as a classifier is to 
find the equation of the separating hyperplane 

1 1 2 2 0n nw x w x w x b     in space nR , which 
will divide the two classes in the most optimal way. 
General view of the transformation F  object x in 
the class label Y: ( ) sign( ).TF x w x b   After 
adjusting the algorithm weights w and offset b, all 
objects that fall on one side of the constructed 
hyperplane will be predicted as the first class, and 
objects that fall on the other side as the second class.  

There are different methods for constructing the 
separating hyperplane, but in the case of SVM, the 
weights w and b are adjusted so that the objects of 
the classes are as far away from the separating 
hyperplane as possible. In other words, the algorithm 
maximizes the margin between the hyperplane and 
the objects of the classes that are closest to it [1]. 

If the sample is linearly separable, then simple 
geometric understanding leads to the following 
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problem: it is necessary to find the values of the 
parameters w and b, at which the norm of the vector 
w is minimal. This is formalized into the following 
problem: 
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T
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1, 1, ..., ,i i

w w

y w x b i k
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where k are number of training sample objects. 
In order to generalize SVM to the case of linear 

non-separability, let's allow the algorithm to make 
errors on training examples, but at the same time try 
to reduce the number of errors. For this, we introduce 
an additional set of variables i , which characterize 
the magnitude of the error on the objects ix  and to 
the functional that is minimized, we will add a 
penalty for the general error and its regularization by 
the coefficient C (adjustable parameter). 

One of the main innovations brought by the 
support vector machine is the kernel trick.  

It can be shown that the linear function used in 
the support vector machine can be rewritten as: 

( ) ( )

1 1

( , ),
m m

i i
i i

i i

w x b b x x b k x x 

 

           (1) 

where x(і) is the training example, α is a vector of 
coefficients, and ( )( , )ik x x  is the kernel function 
(kernel). 

The most commonly used functions are: 
 a linear kernel: K(xi,xj) = T ,i jx x  which 

corresponds to the classifier on the support vectors 
in the original space; 

 polynomial kernel with degree p: K(xi,xj) = 

 T1 ;
p

i jx x  
 Gaussian kernel with radial basis function 

(RBF): K(xi,xj) = exp(γ||xi − xj||2); 
 sigmoid kernel: K(xi,xj) =  T

0t n .a h i jx x   
Each core is characterized by parameters (p, γ, 

β0 etc.), which are subject to optimization 
The main idea of using kernels is that when 

mapping data to a higher-dimensional space, the 
original set of points can become linearly separable [2].  

The kernel trick is useful for two reasons. First, it 
allows (as discussed above) to train non-linear x 
models using convex optimization methods that are 
known to converge efficiently. Second, the kernel 
function k often allows for a much more 
computationally efficient implementation. The most 
common is the Gaussian kernel  

k(u, v) = N(u – v; 0, σ2I),                 (2) 

where N(х; μ, Σ) is the standard density function of 
the normal distribution. 

ІІІ. SEMI-SUPERVISED LEARNING IN THE PROBLEM 
OF SVM SYNTHESIS 

Labeled data are used to tune the SVM. 
However, they can be expensive, time-consuming, 
and difficult to access in many applications. Semi-
supervised learning (SSL) aims to take advantage of 
large amounts of unlabeled data to improve learning 
performance. Empirical evidence suggests that in 
certain favorable situations unlabeled data may help, 
while in other situations it may not. As a result, 
several attempts have recently been made to develop 
a theoretical understanding of semi-supervised 
learning. It is generally accepted that unlabeled data 
can only help when there is a relationship between 
the marginal distribution of the data and the 
objective function to be studied. 

ІV. PROBLEM STATEMENT 

The transductive support vector machine 
(TVSM) algorithm is used as the base in this work. 

Let the training set consist of l labeled pairs (xi, 
yi), where xi – feature vector, yi – the label of the 
class that belongs to the set {1, –1}. Let there also 
exist an unlabeled sample 1 ,..., ,kx x   which belongs 
to the same distribution as the marked objects. Then 
transductive learning based on the support vector 
method can be described by the following 
optimization problem [3]: 
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Solving this problem means finding a label 
1 ,..., ,ky y   labeled data 1 ,..., ,kx x   and get a 

hyperplane ( , )w b , so that this hyperplane separates 
both training and test data with maximum margin. 

i  and j
  is the changing marked and unmarked 

objects, respectively, to handle linear non-
separability. С and С∗ – these are options that the 
user sets. They allow you to trade the size of the 
margin against the misclassification of training and 
unmarked objects. 
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V. REVIEW OF SVM IN SSL 

Among the popular approaches of semi-
supervised learning S3VM [4] – [6] is based on the 
low-density assumption and try to learn a low-
density separator that favors the solution boundary 
passing through low-density regions in the feature 
space [7]. These approach has already been applied 
to various applications such as text classification [6], 
image search [8], bioinformatics [9], natural 
language processing [10] natural language 
processing etc. However, as with other semi-
supervised learning approaches, it has been found 
that S3VM can degrade performance when using 
unlabeled data [11], [8], [12], [13]. 

Paper [14] is devoted to concider SVM with 
partial teacher training based on the use of the 
continuation method, which is an effective tool for 
solving optimization problems with complex 
constraints that take into account uncertainty in 
semi-supervised learning. The authors note that 
SVM is one of the most popular classification 
methods, however, in many situations, data 
collection with labeled data can be a very complex 
or expensive process.  

The work [1] considers the SVM, which is one of 
the most popular machine learning techniques using 
kernels. The SVM method is considered as a 
solution to an optimization problem that reduces to 
maximizing the width of the gap between classes in 
the discriminant function. The notion of 
regularization and soft separating hyperplane are 
discussed in order to avoid overfitting. 

V. DEVELOPMENT OF SSL SVM 

Currently, there are a number of learning 
algorithms with SSL SVM: 

 Proxy Labeling SVM;  
 Noisy Student SVM; 
 Co-training SVM; 
 MixMatch SVM; 
 S3VM; 
 Transductive SVM. 
Consider their features. 
The first proxy-tagged SVM approach involves 

using an initial SVM to create proxy labels for 
unlabeled data, and then training a new SVM on the 
combined labeled and proxy labeled datasets. This 
approach uses information about labeled data to 
improve the accuracy of predictions on unlabeled 
data. 

The second approach involves iteratively training 
the SVM model on a growing labeled dataset, 
adding the highest confidence predictions from the 
previous iteration and adding noise to the new 
labeled data. This approach uses the information in 
the unlabeled data to generate additional labeled 
examples and to improve the accuracy of the final 
SVM model. 

The third approach involves training two SVMs 
on two different subsets of labeled data, and then 
iteratively adding examples to each subset using a 
different SVM to label them. This approach uses 
unlabeled data to improve the accuracy of SVM 
models by generating additional labeled data. 

The fourth approach involves combining labeled 
and pseudolabeled examples into a mixed dataset 
and applying data extension techniques to improve 
model robustness. This approach uses unobserved 
data to generate additional examples used to train 
the SVM model and improve its accuracy. 

The fifth approach uses both labeled and 
unlabeled data for SVM training. Unlabeled data is 
used to learn the structure of the data, while labeled 
data is used to configure SVM parameters. This 
method is shown to be effective in reducing the 
amount of labeled data required for training. 

The sixth approach also uses both labeled and 
unlabeled data for SVM training. The approach is 
similar to S3VM, but instead of treating unlabeled 
data as a pool of candidates for future labeling, 
TSVM treats all untagged data as test data and tries 
to find a decision limit that better separates labeled 
data while minimizing error on unlabeled data. 

Each of these approaches has disadvantages. In 
our opinion, the TSVM has the greatest advantages 
over the others, so this algorithm is taken as a basis. 
One way to improve it is to use the voting method of 
several algorithms: aggregating the results of each 
individual classifier and determining the major 
prediction based on the largest majority of votes. 
The idea is that instead of creating separate 
specialized models and looking for accuracy for 
each of them, we create a single model that learns 
from these models and predicts the result based on 
their overall majority vote for each class of results. 
Thus, as several different algorithms in nature, it is 
possible to use several different kernel functions (eg, 
radial basis, linear, sigmoidal, polynomial) to train 
different SVMs. 

Optimization of hyperparameters is an important 
stage when working with TSVM, as well-tuned 
hyperparameters can improve the stability of the 
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algorithm. Some possible hyperparameter 
optimization techniques for TSVM: 

● Grid Search: This method consists of 
choosing a set of hyperparameters and iterating 
through all possible combinations of these 
hyperparameter values to find the best parameters. 
The disadvantage of this method is that it is 
computationally expensive for large numbers of 
hyperparameters and their values. 

● Random Search: This method is to randomly 
select a set of hyperparameters and perform model 
training on this set of hyperparameters. This method 
is less time consuming than Grid Search, but may 
require more iterations to find the best parameters. 

● Bayesian Optimization: This method is more 
complicated, but it can help reduce the number of 
iterations to find the best parameters. It is based on a 
model of Gaussian processes, which allows 
estimation of the cost function based on information 
about the accuracy of the model for certain values of 
the hyperparameters. From this model, new sets of 
hyperparameters are generated for the next iteration. 

Bayesian optimization can be less 
computationally demanding than lattice and random 
search because it considers fewer combinations of 
hyperparameters. In addition, Bayesian optimization 
allows the model to focus on those hyperparameters 
that are important to achieve the best results. 

The Optuna framework was chosen as the 
hyperparameter tuning tool, which is an open source 
framework for automatic hyperparameter 
optimization that uses Bayesian optimization to 
efficiently find optimal hyperparameter values. This 
framework has become popular due to its ease of 
use, speed and flexibility [15]. 

Optuna has several advantages that make it the 
optimal choice for SVM hyperparameter tuning using 
Bayesian optimization. Below are a few of them: 

 Ease of use: Optuna has a simple and intuitive 
interface that makes it easy to configure and run 
SVM hyperparameter optimization. 

 Efficiency: Optuna uses Bayesian 
optimization, which is an efficient method for 
finding optimal hyperparameter values. This allows 
you to focus on the hyperparameters that are 
important to achieve the best results. 

 Flexibility: Optuna allows you to use various 
optimization methods, including Bayesian 
optimization, which allows you to find optimal 
hyperparameter values in a wide range of machine 
learning problems. 

To configure TSVM hyperparameters, you need 
to define a range of possible hyperparameter values 

to search for. In our case, ranges of values were 
defined: 

 C [0.5, 5]; 
 C [0.5, 5]; 
 kernel [‘linear’, ‘poly’, ‘rbf’, ‘sigmoid’]; 
 gamma [0.05, 0.75, ’scale’].  
Let's define the function of evaluating the quality 

of the adjusted model on the validation sample. The 
F1-metric is selected, which is maximized. 

After optimization, the following 
hyperparameters were obtained: 

 C = 1; 
 C = 0.5; 
● Kernel = ‘sigmoid’ 
● Gamma = 0.5 
Due to the fact that TSVM is quite sensitive to 

outliers in the training sample, it is proposed to 
create a combination of several TSVM algorithms 
with different settings. For a combination of 
predictions, it is suggested to use the voting method 
of models with different kernels [16]. In addition to 
the already mentioned reduction in sensitivity to 
outliers, the voting method may have several other 
advantages compared to the prediction of a separate 
algorithm: 

● Reducing the risk of overfitting: when only 
one algorithm is used, there is the possibility of 
overfitting, when the model becomes overly 
complex and fits the training data precisely, which 
reduces its ability to generalize to new data. Using 
multiple algorithms in voting reduces this risk, as 
each algorithm solves the problem with its own 
approach and hyperparameters. 

● Improved prediction accuracy: Provided the 
algorithms used have different methods and 
hyperparameters, better accuracy can be achieved 
than using a single algorithm alone. Each algorithm 
can highlight different aspects in the data, so a 
combination of them can give a better result. 

● Increasing the diversity of results: If the 
algorithms used have significant differences in their 
methods and hyperparameters, then voting can 
produce diverse results for different inputs, 
providing a wider coverage of possible answers and 
reducing the probability of false predictions. 

A separate TSVM model with different kernel 
parameters is created for each kernel (['linear', 'poly', 
'rbf', 'sigmoid']) , , and ,lin poly rbf sigmF F F F  which are 
trained on the same data set. After training the 
defined algorithms, predictions are made 

* * * *, , and )lin poly rbf sigmy y y y  (on marked data 1 , , kx x   
and decision functions are calculated 



 
40                                                                    ISSN 1990-5548   Electronics and Control Systems  2023. N 1(75): 36-43 
 

 , , andlin poly rbf sigmdec dec dec dec    , which are 
proportional to the distances from the predicted 
objects to the trained separating hyperplane. 

The resulting decision functions from different 
TSVM models are combined using median voting: 

 * median , , , .comb lin poly rbf sigmdec dec dec dec dec       

Each prediction of the TSVM model counts as a 
vote, and the final decision is made based on the 
median of these votes. The final prediction is formed 
according to the rule that if the median is greater 
than or equal to 0, then it is classified as class 1, 
otherwise it is classified as class –1: 

*1, if 0,
1, else.

comb
comb

dec
y  

 


 

After voting, a final prediction is obtained, which 
can be compared with the actual values. 

As a result, we have the following algorithm 
1. Data preparation. 

1.1. Dividing the dataset into separate parts: 
training and validation labeled samples, unlabeled 
data. 

1.2. Application of data preprocessing: filling 
gaps, normalization of features. 

2. TSVM training and optimization. 
2.1. Select initial kernel for TSVM (linear, 

radial, polynomial or sigmoid). 
2.2. Set initial values of hyperparameters such 

as C, Cu and gamma. 
2.3. Initial training. 

2.3.1. We initialize the parameters by setting 
the positive class label to +1 and the negative class 
label to –1. 

2.3.2. We calculate the ratio of positive 
labeled examples in X1 to the total number of 
labeled examples. This ratio is then used to 
determine the number of positive examples to mark 
in X2. 

2.3.3. We then calculate the sample weight for 
each example by setting the weight Cl for each 
labeled example in X1 and 0 for each example in 
X2. Cl is a hyperparameter that defines the penalty 
for misclassifying the labeled example. 

2.3.4. We train a binary SVM classifier on X1 
with the sample weights assigned in the previous 
step. We classify the num_plus examples with the 
highest value as +1, and the rest as –1. 

2.3.5. We predict the labels for X2 using the 
trained classifier, and label the num_plus examples 
with the highest values of the decision function +1 
and the rest with –1. 

2.3.6. We set the initial weight of each 
example in X2 to C_minus if it is marked as –1, and 
C_plus if it is marked as +1. C_minus and C_plus 
are hyperparameters that define the penalty for 
misclassifying an unlabeled example. 

2.3.7. We create a new data set X3, which is a 
concatenation of X1 and X2. We also create a new 
set of labels, Y3, which is a concatenation of Y1 and 
the predicted labels for X2. 

2.3.8. We enter a cycle that continues until 
C_minus and C_plus reach the specified maximum 
value (Cu). 

2.3.9. We train a binary SVM classifier on X3 
using the sample weights assigned in the previous 
step. 

2.3.10. We calculate slack variables that 
represent the degree to which each example violates 
the classification boundary. 

2.3.11. We then calculate the epsilon slack 
for the labeled examples, which is the sag variable 
for the labeled examples. 

2.3.12. We check whether there are any 
unobserved examples with epsilon-slack greater than 
zero, which indicates the condition when an example 
is misclassified. 

2.3.13. If such an example exists, we enter 
another loop where we identify the positive and 
negative set of examples with the highest epsilon-
slack values. 

2.3.14. We change the labels for these two 
examples and update the sample weights for each 
example. 

2.3.15. We then retrain the binary SVM 
classifier on X3 with the updated sampling weights. 

2.3.16. We repeat steps 11-16 until there are 
no unlabeled examples with epsilon slack greater 
than zero. 

2.3.17. Then we increase C_minus and 
C_plus by a factor of 2 or until they reach their 
maximum value, Cu. 

2.3.18. We update the sampling weights for 
each example and repeat steps 10-18 until C_minus 
and C_plus reach Cu. 

2.3.19. Finally, we return the predicted 
labels for X2 as the result of the TSVM algorithm. 

2.4. Determine the acceptable range of 
hyperparameter values for optimization and use 
Bayesian optimization (using the Optuna library) to 
find optimal hyperparameter values based on quality 
metrics. 

2.4.1. Iterating over the allowable range of 
hyperparameter values. 

2.4.2. Training a TSVM model based on 
previous steps 2.3.1–2.3.19 and a combination of 
hyperparameters from the current iteration. 
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2.4.3. Using the trained model, make a 
forecast on the control sample. 

2.4.4. Evaluate the quality of the forecast 
using the F1 metric. 

2.5. Select the best set of hyperparameters by 
selecting the best estimate of the prediction. 

3. Create a combined forecast by training 
multiple TSVM models. 

3.1. Take as a basis the best hyperparameters 
from the results of step 2.4 and train separate TSVM 
models for different kernels (linear, radial, 
polynomial or sigmoid). 

3.2. After training each TSVM model, 
predictions are made on unlabeled data and a 
decision function is computed, which returns the 
distance to the separating hyperplane. 

3.3. The resulting decision functions are 
combined using median voting. Each prediction of 

the TSVM model counts as a vote, and the final 
decision is made based on the median of these votes. 
If the median is greater than or equal to 0, then it is 
classified as a positive class, otherwise it is 
classified as a negative class. 

4. After performing training, optimization and 
combining the predictions, a final prediction is 
obtained, which can be compared with the actual 
values. 

5. Evaluate the quality of the forecast using the 
F1 metric. 

V. RESULTS 
After voting, a final prediction is obtained, which 

can be compared with the actual values. The 
obtained results are shown in the Tables 1–3. 

TABLE І. AVERAGE BY DATASET TYPE 

 Accuracy Recall Precision f1 

 TSVM 
Voting 
TSVM 

Base 
SVM TSVM 

Voting 
TSVM 

Base 
SVM TSVM 

Voting 
TSVM 

Base 
SVM TSVM 

Voting 
TSVM 

Base 
SVM 

type_dataset             

banana 0.518 0.497 0.493 0.643 0.618 0.753 0.505 0.494 0.489 0.549 0.539 0.555 

banana_inverse 0.541 0.635 0.554 0.719 0.814 0.738 0.527 0.632 0.547 0.598 0.689 0.610 

c_circles 0.501 0.618 0.504 0.507 0.610 0.563 0.348 0.422 0.337 0.411 0.499 0.418 

two_moons_classic 0.828 0.888 0.760 0.838 0.918 0.807 0.823 0.867 0.739 0.830 0.891 0.769 

two_moons_tight 0.632 0.781 0.600 0.563 0.740 0.523 0.669 0.814 0.407 0.595 0.763 0.454 

two_moons_wide 0.942 0.928 0.906 0.917 0.870 0.966 0.969 0.987 0.864 0.937 0.913 0.912 

TABLE ІI. AVERAGE BY PERCENTAGE OF MARKING 

 Accuracy Recall Precision f1 

 TSVM 
Voting 
TSVM 

Base 
SVM TSVM 

Voting 
TSVM 

Base 
SVM TSVM 

Voting 
TSVM 

Base 
SVM TSVM 

Voting 
TSVM 

Base 
SVM 

perc_labeled             

1 0.637 0.640 0.618 0.644 0.642 0.635 0.597 0.615 0.443 0.587 0.593 0.510 

10 0.696 0.774 0.665 0.785 0.836 0.897 0.677 0.754 0.636 0.722 0.787 0.730 

50 0.649 0.760 0.625 0.664 0.807 0.643 0.646 0.739 0.612 0.651 0.768 0.619 

TABLE ІII. GENERAL RESULTS 

  Accuracy Recall Precision f1 

  TSVM 
Voting 
TSVM 

Base 
SVM TSVM 

Voting 
TSVM 

Base 
SVM TSVM 

Voting 
TSVM 

Base 
SVM TSVM 

Voting 
TSVM 

Base 
SVM 

type_dataset 
perc_la
beled             

banana 1 0.577 0.512 0.498 0.966 0.852 1.000 0.542 0.506 0.498 0.694 0.635 0.665 

10 0.500 0.501 0.499 0.612 0.592 1.000 0.499 0.500 0.499 0.550 0.542 0.666 
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50 0.478 0.478 0.482 0.351 0.410 0.259 0.473 0.477 0.471 0.403 0.441 0.334 

banana_inve
rse 

1 0.549 0.496 0.496 0.974 1.000 1.000 0.525 0.496 0.496 0.682 0.663 0.663 

10 0.594 0.712 0.588 0.604 0.632 0.524 0.597 0.757 0.606 0.600 0.689 0.562 

50 0.480 0.698 0.578 0.579 0.809 0.689 0.458 0.642 0.540 0.511 0.716 0.606 

c_circles 1 0.416 0.467 0.497 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

10 0.633 0.757 0.494 0.946 1.000 1.000 0.579 0.670 0.494 0.718 0.803 0.662 

50 0.454 0.632 0.522 0.574 0.829 0.689 0.465 0.596 0.518 0.513 0.693 0.591 

two_moons_
classic 

1 0.780 0.832 0.785 0.792 0.848 0.836 0.773 0.822 0.758 0.782 0.835 0.795 

10 0.843 0.907 0.776 0.866 0.960 0.886 0.827 0.867 0.724 0.846 0.911 0.797 

50 0.862 0.926 0.720 0.857 0.944 0.698 0.867 0.912 0.733 0.862 0.928 0.715 

two_moons_
tight 

1 0.623 0.725 0.498 0.376 0.535 0.000 0.748 0.866 0.000 0.501 0.662 0.000 

10 0.636 0.789 0.726 0.683 0.830 0.975 0.622 0.765 0.649 0.651 0.797 0.780 

50 0.638 0.828 0.576 0.631 0.855 0.594 0.638 0.810 0.571 0.634 0.832 0.583 

two_moons_
wide 

1 0.877 0.806 0.935 0.759 0.614 0.972 0.995 1.000 0.906 0.861 0.761 0.938 

10 0.968 0.981 0.908 1.000 1.000 0.998 0.939 0.963 0.845 0.969 0.981 0.915 

50 0.982 0.996 0.874 0.992 0.996 0.929 0.973 0.996 0.840 0.982 0.996 0.882 
 

VI. CONCLUSIONS 

A new algorithm of the support vector machine 
using semi-supervised learning was developed. The 
high efficiency of the algorithm is ensured by the 
use of the voting method, which makes it possible to 
aggregate the results of each individual classifier and 
determine the major prediction based on the largest 
majority of votes. As several different algorithms in 
nature, several different kernel functions (eg, rbf, 
linear, sigmoidal, polynomial) can be used to train 
different SVMs. Optuna is a machine learning 
hyperparameter optimization framework that 
provides a wide range of algorithms to find the best 
hyperparameters. 
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В. М. Синєглазов, А. О. Самошин. Напівкерована машина опорних векторів 
У статті розглянуто новий підхід побудови машини опорних векторів із напівкерованим навчанням для 
вирішення задачі багатокласової класифікації. Передбачається, що розподіли умовних класів можуть 
перекриватися. Зроблено модифікацію функції вартості за рахунок додавання до неї елементів штрафу за 
влучення міток не до свого класу. Штраф подається у вигляді лінійної функції відстані між міткою та межею 
класу. Для подолання проблеми багатокритеріальності запропоновано метод глобальної оптимізації, відомий як 
continuation. Для комбінації передбачень пропонується використати метод голосування моделей з різними 
ядрами. За інструмент для налаштування гіперпараметрів був обраний фреймворк Optuna. В якості навчальних 
вибірок було розглянуто наступні: type_dataset, banana, banana_inverse, c_circles, two_moons_classic, 
two_moons_tight, two_moons_wide. 
Ключові слова: машина опорних векторів; напівкероване навчання; багатокласова класифікація; 
багатокритеріальність; метод глобальної оптимізації. 
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