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Abstract—In recent years, neural networks have become increasingly popular due to their versatility in
solving complex problems. One area of interest is their application in solving linear algebraic systems,
especially those that are ill-conditioned. The solutions of such systems are highly sensitive to small
changes in their coefficients, leading to unstable solutions. Therefore, solving these types of systems can
be challenging and require specialized techniques. This article explores the use of neural network
methodologies for solving linear algebraic systems, focusing on ill-conditioned systems. The primary goal
is to develop a model capable of directly solving linear equations and to evaluate its performance on a
range of linear equation sets, including ill-conditioned systems. To tackle this problem, neural network
implementing iterative algorithm was built. Error function of linear algebraic system is minimized using
stochastic gradient descent. This model doesn’t require extensive training other than tweaking learning
rate for particularly large systems. The analysis shows that the suggested model can handle well-
conditioned systems of varying sizes, although for systems with large coefficients some normalization is
required. Improvements are necessary for effectively solving ill-conditioned systems, since researched
algorithm is shown to be not numerically stable. This research contributes to the understanding and
application of neural network techniques for solving linear algebraic systems. It provides a foundation
for future advances in this field and opens up new possibilities for solving complex problems. With further
research and development, neural network models can become a powerful tool for solving ill-conditioned
linear systems and other related problems.

Index Terms—Linear algebraic systems; condition number; ill-conditioned systems; neural network;

gradient descent; TensorFlow.
I. INTRODUCTION

Solving linear algebraic systems is crucial in
science and engineering. traditional methods, like
Gaussian elimination, may struggle with ill-
conditioned systems where small input changes cause
significant solution variations. Neural networks offer
a promising alternative, capable of learning complex
patterns and adapting to diverse problems. This paper
explores neural network methods for solving various
linear equation systems, focusing on ill-conditioned
systems. Our goal is to develop a model that directly
solves linear equation systems while minimizing
overfitting risks. We propose a versatile model and
evaluate its performance on multiple linear equation
sets, including ill-conditioned ones. The article
discusses existing methods, challenges with ill-
conditioned systems, and introduces the proposed
neural network model. We present the results,
providing insights into the model's performance and
areas for further refinement.

II. PROBLEM STATEMENT

The linear equations system can be represented in
matrix form, where A is an mxn matrix, x is a
column vector with n entries, and b is a column
vector with m entries, as:

a] 1 alZ 1n 1 bl
aZ] a22 o aZn x2 bZ

x| 2= (1)
am] amZ o amn xn bm

or matrix equation Ax =5 . Given matrix A is square
and has full rank, the system has a unique solution

x=A"b,where A" represents inverse of matrix A.

In real life problems, modelled by linear
algebraic system, the matrix A or vector b may be
known only approximately (due to rounding errors,
floating-point accuracy or the sensitivity of the
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sensor observing some process), thus introducing
some error Ab. Therefore,

A(x+Ax)=b+Ab )
Solving (2) for Ax gives
A(Ax)=Ab= Ax = A"'Ab 3)

(3) is the error in solution (1).

Furthermore, matrix A can be practically non-
invertible — its determinant may be close but not
equal to 0; such matrices are said to be ill-
conditioned. For linear equations, condition number
measures the rate of change in solution x according
to the change in b.

Given the Euclidean norm:

bl =(Z L) @

and
K = max ||Ax|| = ||A R Q)
<+
a1
k=min5%—=7——-, (6)
4
then
K .
cond(4) ==~ =[l4]* |47 (7)

is called the condition number of the matrix A [1].

When the cond(A) is not significantly larger than
one, the matrix is well-conditioned, which means
that its inverse can be computed with good accuracy;
when the condition number is very large, then the
matrix is said to be ill-conditioned. Practically, such
a matrix is almost singular, and the computation of
its inverse, or solution of a linear algebraic system is
prone to large numerical errors.

Classic example of ill-conditioned matrix is
Hilbert matrix [2], its entries defined as

1
= 8
Yo+ j-1 ®
The following is (3x3) Hilbert matrix:
1
)

W= N~

It’s cond(H)~526.16, while (5x5) Hilbert
matrix has cond(H )~ 4.8x10’ as calculated by (7).

The goal of this article is to benchmark neural
network architecture with stochastic gradient descent
optimizer for approximation of the solution of
system on several well-conditioned systems and ill-
conditioned systems [3]. We are particularly
interested in comparing obtained solution with the
exact solution of the system.

III. PROBLEM SOLUTION

A)  Neural network architecture

We will use neural network with stochastic
gradient descent optimizer to solve linear equations.
Traditionally, neural networks are built with input,
hidden and output layers consisting of neurons. Then,
input data, which is a rather large dataset of training
examples with labels, is fed into it. After that, we can
predict some value or label for another piece of data.
In our case, input dataset would be as big as millions
of randomly-sized linear algebraic systems, which
we could generate by randomizing matrix A and
vector X, the dot product of which would be the
vector b. We could then theoretically input any new
linear algebraic systems and get its solution.
However, since neural network doesn’t solve the
linear algebraic systems, but rather approximates the
weights to best fit training examples, this architecture
will not solve system it wasn’t trained on.

Instead, we implement naive iterative solution
method as described in [4]. We won’t be using input,
hidden and output layers with neurons; activation
function is not needed as well. In the training cycle,
we  will minimize the error function

f(xy)=|Ax,—b|. When f(x)=0, x is the exact
solution. Matrix A and vector b are stored in the
model. The solution x is stored in the single layer as
weights. The loss function for this architecture is the
following:

loss(x) =Y (Ax —b)’. (10)

The value of the loss function at x, is called
residual and denoted by |[r|. When this model is
trained for N epochs, loss function is repeatedly
evaluated at X, and minimized using stochastic
gradient descent [5] shown on Fig. 1. We set initial
approximation x—O:(O,O,...,O) and converge on

some local minimum of (10) after N epochs.

The inputs and the loss function are the only
things that we need to code explicitly. We will use
popular Python libraries TensorFlow [6] and Keras
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[7] to implement this neural network — training,
minimizing and predicting are done implicitly by
these libraries. We will also use NumPy [8] for
and Matplotlib

numerical operations for

visualizing graphs.

[9]

loss

global minimum

local minimum

gradient

x/ weights;

\
Fig. 1. Minimization of some loss function using
stochastic gradient descent. Some local minimum is
approximated from x, in small incremental steps
determined by learning rate of the model

In order to train the model to solve linear
algebraic system, we feed matrix A and vector b
inside, set initial approximation to all zeroes, choose
some learning rate and set the loss function to (10).
After the training is complete, we predict the

-5 2 2 =5 2 5 1

2 5 0 3 -1 4 3
-1 -1 0 -3 -1 4
-5 4 -5 4 2 4 4
-5 1 4 -2 0 3

4 2 -1 2 2 4 -1

3 -5 -5 1 4

2 3 -1 0 3

0 1 0 4 2 0 4
-2 -2 -1 3 3 -1 0

solution as the last approximation of the loss
function.

B)  Building testing dataset
We begin by generating systems of linear
equations. We will generate 3 examples of well-
conditioned systems (integers) as well 3 examples of
ill-conditioned systems (Hilbert matrices) of sizes
(3x3), (5x5) and (10x10). Below are the generated
samples:

1) Sample (11), a (3%3) system which has

cond(A) ~4.636

4) Sample (14), a (3 x3) system which has cond(A) ~5.262x10°

1

W= |-

2 -1 -3 0 -4
—4 -5 4 |x|4|=|-20]| (11)
4 2 1 0 8
2) Sample (12), a (5%5) system which has
cond (A4)~2.763x10'
3 4 1 4 -5 2 -16
2 4 0 -3 2 3 4
-1 -3 =2 =3 4 |x|-3|=| 13 |. (12)
-5 -1 0 -1 3| |2 -20
-1 -5 1 -5 2 3 —4
3) Sample (13), a (10x10) system which has
cond (A4)~4.534x10".
1 -1 3 —4 13
1 3 4 -2 26
2 -1 -4 -1 -8
31 -5 4 57
4 0 1 1 18
x = . (13)
0o -2 4 1 =27
2 -4 -1 2 —45
4 -3 1 3 17
4 -3 4 4 12
2 1 1 3 10
-5 —2.6667
x| 2 |=|-0.8333|. (14)
4 —0.3667
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5) Sample (15), (5%5) system, has cond(A) ~ 4.808x10°

L1
2 3
111
2 3 4
111
3.4 5
111
45 6
111
5 6 7

6) Sample (16), a (10%x10) system, has cond(A) ~1.633x10"

L R S R
2 3 4 5 6 7
TS T T S T
2 3 4 5 6 71 8
o111 11
3 4 5 6 7 8 9
TS T T T T
4 5 6 7 8 9 10
TS T T S T
5 6 7 8 9 10 11
TS T R S T
6 7 8 9 10 11 12
S T S T T T
7 8 9 10 11 12 13
S 11
8 9 10 11 12 13 14
IS S T T T
9 10 11 12 13 14 15
o111 11
10 11 12 13 14 15 16

On Fig. 2 shows conditionality of each sample by
varying Ab in range (10’5 ,10"). Well-conditioned
systems in the first row display insignificant change
in ||x| as we add Ab, but ill-conditioned systems in
the second row show major change in |x| — as big

as 10° for ||Ab|| =102

C)  Analyzing solution

On Fig. 3 shows training routine for all samples —
after a number of epochs loss function converges on
some minimum; the weights are the solution to the

system. Results for well-conditioned systems (11),

11
4 5

1 1] (=5} (-0.9500

S 613 0.5167

L0 3 |2] 07548 (15)
? Z 3 0.7786

7 g 4 0.7480

11

8 9

111

8§ 9 10

11

9 10 11

% % % 3) (-1.0552

U || 4] | -1sso

T 10 53l |-5| |-14478

1 1 1 2 -1.3287

12 13 14| | 4| |-1.2165

111 2|7 —ins7 |

13 14 15| [=2| |-1.0345

1T T ]-1| |-09618

14 15 16| | 41 | -0.8986

L1 Lhiss) | 208433

15 16 17

111

16 17 18

11 (16)
17 18 19

(12), (13) are identical; exact and predicted solutions
with ||Ab| =10 are perfectly equal and ||Ax|=0.
The graph is the same for |[Ab|=10" and
|AB|=107. This means that stochastic gradient

descent converged to global minimum of the loss
functions for the systems, which are the exact
solutions, giving [Ax|=0 and |[|=0. This
indicates that chosen neural network architecture is
capable of solving well-conditioned linear algebraic
systems.
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Fig. 2. Small Ab applied to generated samples: Ax is growing as Ab is increased in range (10’5 ,107 )
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Fig. 3. Loss function converging close to 0 while training on generated samples. Loss function converges faster for
well-conditioned systems

Fig. 4 shows components of X on x-axis and Fig. 5 Fig. 6 show solutions for (15) with
their values on y-axis for exact (known) and [Ab|=10"° and [|Ab|=10". While in Fig. 5 ||Ax| is
approximated solutions. comparatively low, in Fig. 6 |Ax||~ 220.21 with

The solution for (14), as shown on Fig. 4, has
|| = 6x107°.

|Ax| ~22.91while ||| calculated by (10) is 0.3357.
Finally, Figs. 7, 8 and 9 show results solving (16),

. _4 2 .
Increasing ”Ab” to 107 or 10 in (14) does not a (10x10) linear algebraic system that has
change ||Ax|| much. cond(A4)~1.633x10". As ||Ab| is increased to
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107, |Ax] 1.2659x10"  while

||r||:0.0014. This means that stochastic gradient

grows to

descent found the local minimum of the loss
function for the system (16), which doesn’t equal its

solution and ||Ax||z1.2659><10'0. This

indicates that demonstrated neural network
architecture is not numerically stable and is not
capable of approximating solutions for ill-posed
problems

exact

delta b = 1e-06, norm x = 27 912964

4 — x exact
=== ¥ predicted

valise

g 1 2

Fig. 4. Exact solution and neural network approximation
for (14) with [|Ab|=10"

defta b = 1e-06, norm x = 1. 412161
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=== x predicted

walue
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9 1 2 E 4

Fig. 5. Exact solution and neural network approximation
for (15) with [|Ab[|=10"

defta b = .01, norm x = 220.214828

— W PAECT
188 | —o- ¢ preaicten x

7.5
59

ES]

W ue

&a

~5.8

~1.5

2 1 2 3 1
Fig. 6. Exact solution and neural network approximation
for (15) with |Ab| =107
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Fig. 7. Exact solution and neural network approximation
for (16) with [|Ab[|=10"
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Fig. 8. Exact solution and neural network approximation
for (16) with [|Ab|=10"*
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Fig. 9. Exact solution and neural network approximation
for (16) with |Ab| =107

IV. CONCLUSIONS

In this article we demonstrated conditionality
problem for neural network architecture for solving
linear algebraic systems with stochastic gradient
descent optimizer. While this architecture performs
well for well-conditioned systems, producing exact
solution to the system, it is hardly useful for ill-
conditioned systems and ill-posed problems.
Although the residual is close to 0, the solution itself
is very different from the exact solution, having

huge norm ||x|| This makes applying this algorithm
to some real-world problem impractical. In the next
article, we will show some methods and techniques

for modifying the proposed solution for better
performance on ill-posed problems.

Mamonov Volodymyr. Bachelor's degree student.
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B. B. Mamonos, €. O. HIlarixin, F0. O. Tumomenko. Heiipomepe:xxeBe po3B’sA3aHHA CcHCTeM JIiHiliHMX
anreOpuyHux piBHsAHb. YacTuna 1

OcraHHIM 4acoM HEHpPOHHI MEpEXi CTaNU BCe TOMYJISIPHIIINMU 3aB/SIKK CBOIH YHIBEPCAIBHOCTI Y BUPIIICHH] CKIIaTHUX
npobsiem. OfHi€EO 3 IIKaBUX 00JacTel iX 3aCTOCYBaHHsI € PO3B’sI3aHHS JIIHIWHUX adreOpUYHUX CHCTEM, OCOOIUBO THX,
IO € TOraHo oOyMOBJIEHUMH. PO3B’SI3KM MOAIOHMX CHCTEM JIy)Ke YYTJIHUBI J0 HEBEJIHMKHX 3MiH iX KOe]ili€HTIB, IO
MIPU3BOJUTH 10 HECTIMKMX pilleHb. TOMY pO3B’si3aHHS IIMX THIIB CHUCTEM MOXKE OYTH CKJIAJHOIO 3a7a4yelo i BUMaraTu
CreliaIbHUX TPUHOMIB. Y CTaTTi JOCIIKEHO 3aCTOCYBaHHS HEWPOHHUX MEPEX JUIS PO3B’S3aHHS CHCTEM JIHIHHHX
anreOpUYHKUX PiBHIHB, 30CEPEPKYIOYNCH HAa MOTaHO 00YMOBJIEHHX cucreMax. OCHOBHOIO METOIO € po3poOKa Mopeli,
3JIaTHOI Oe3MocepeHh0 PO3B’SI3yBaTH JIHIMHI PIBHSHHS Ta OLIHIOBAaHHS 11 MPOAYKTHBHOCTI Ha Pslli CUCTEM, B TOMY
YyuCIi moraHo oOyMoBieHuX. [y BupilIeHHs 1€l mpoOiieMu Oyio moOyaoBaHO HEWPOHHY MEPEKy, sKa peali3ye
iTepaTuBHUN airoput™. @OYHKIIS MOMWIKK JHIHHOI ajareOpU4HOI CHUCTEMH MIHIMI3YETbCS 32 JJOIOMOTOIO
CTOXaCTUYHOTO TPaJiEHTHOrO ciycKy. LI Mozens He moTpedye TpUBAJIOro HaBYaHHS, OKPIM HANIAIITYBaHHS IIBHIKOCTI
HaBYaHHS JJIs1 OCOOMBO BENMKUX CHCTeM. AHai3 IOKa3ye, IO 3allpOIIOHOBaHA MOJETh MOXKE J100pe CIIPaBIISITUCS 3
rapHo OOYMOBJICHMMH CHCTEMaMHU pI3HHX pO3MIpiB, XoO4a JUIS CHUCTEM 3 BEJIHKHMH KoedillieHTaMu NOTpiOHa
HopMamizanisi. [l eekTHBHOrO pO3B’s3aHHS IOTaHO OOYMOBJIEHMX CHCTEM IIOTPIOHI TOKpAalleHHS, TaK SIK
JIOCII/PKYBaHUI QJITOPUTM BUSIBUBCS apu(METHYHO HEeCTiHKuM. Lle JociikeHHs Cipysie pO3yMIHHIO Ta 3aCTOCYBaHHIO
METO/IIB HEHPOHHUX MEpEeX Ul PO3B’s3aHHs JiHIHHUX anreOpuyHux cucreM. Lle 3abe3neuye ocHOBY st MalOyTHIX
MPOCYBaHb y I Tamy3i Ta BIIKPUBAaE€ HOBI MOXJIMBOCTI JUIS BHUPIMICHHSA CKIAIHUAX MPoOjeM. 3 MOJabIIMMU
JIOCITI/PKEHHSIMHA Ta PO3BUTKOM MOJEJl HEHPOHHUX MEpPEK MOXYTh CTaTH IOTY)KHHM 1HCTPYMEHTOM JUIsl PO3B’sI3aHHS
MOraHo 0OYMOBJICHHX JITHIHHMX CUCTEM Ta 1HIIKX OB’ SI3aHUX MPOOJIEM.

Karwu4oBi cioBa: cucremu JiHIHHUX aireOpHYHHUX PIBHSIHB; YHCIO OOYMOBJICHOCTI; MOTaHO OOYMOBIJIEHI CHUCTEMH;
HeWpOoHHA Mepexa; rpaxieHTHui cinyck; TensorFlow.
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