
I.V. Zakutynskyi, I.E.Rabodzey
Microservice Communication for IoT-based Systems. Architecture Review and Performance Test 73

©National Aviation University, 2022
http://jrnl.nau.edu.ua/index.php/ESU, http://ecs.in.ua

UDC 621.382.2(045)
DOI:10.18372/1990-5548.74.17311

1I. V. Zakutynskyi,
2I. Y. Rabodzey

MICROSERVICE COMMUNICATION FOR IOT-BASED SYSTEMS. ARCHITECTURE REVIEW
AND PERFORMANCE TEST

1Radio Electronic Devices and Systems Department, Faculty of Air Navigation, Electronics and
Telecommunications, National Aviation University, Kyiv, Ukraine

2Department of Information Technology Security, Faculty of Cyber Security, Computer and Software
Engineering, National Aviation University, Kyiv, Ukraine

E-mails: 1ihor.zakutynskyi@nau.edu.ua ORCID 0000-0003-2905-3205,
2igor.rabodzei@gmail.com ORCID 0000-0002-2505-5249

Abstract—One of the most important things in IoT system development is the right communication
technologies and protocols. Communication of modern IoT systems can be divided into two main parts:
device-to-cloud communication and communication between cloud microservices (application level). In
this study, the authors designed a test-system environment for evaluating the performance of the existing
transmitting protocols for the cloud microservices communication. The proposed environment allows
emulate of IoT systems with low network latency which allows evaluating and comparing protocols
performance. The authors provide tests for the most popular application-level protocols: HTTP, MQTT,
AMQP, and GRPC. The performance evaluation was performed based on such metrics: throughput,
concurrency, scalability, transmitting size, and init connection time. The obtained experimental results
and testing environment can be used for the efficient design of microservice communication.

Index Terms—Internet of things; communication protocols; performance evaluating; microservice
communication; MQTT; HTTP; AMQP; GRPC.

I. INTRODUCTION

The number of connected IoT devices growing
every day. According to the "State of IoT – Spring
2022 report", we'll have 27 billion connected IoT
devices by 2025 year [1]. This is made possible by
the development of a smaller and cheaper base of
electronic components, as well as the development
of energy-efficient data transmission technologies
such as LTE, LORA, and their extensions for IoT-
based systems.

The growing number of connected sensors
creates real-time data processing challenges. Also,
one of the biggest problems is large device fleet
management.

Today there are many data transmission
standards, so the problem of integration and
compatibility of devices arises. The problem of
integration and unification should be solved at the
application level, by describing standardized
interfaces. Also, today a load of IoT systems is
dynamic and unpredictable, so the architecture
should be available and scalable-ready. For this
purpose was designed a set of special standards was
by the World Wide Web Consortium (W3C) – Web
of Things (WoT) [2].

WoT standards describe the interoperability of
different Internet of things (IoT) platforms and
application domains. At the applications level can be
implemented device-agnostic abstractions for device
management. Additional levels of abstraction allow
us to divide the functionality into separate
microservices. With this approach, we get many
advantages, such as:

Scalability: Each microservice can be scaled
independently of other services at high-load periods
and reduced at idle periods.

Reliability: If one service fails, others continue to
work.

Technologies agnostic: Each microservice can be
implemented by different technologies and
supported by separate teams

Testing: the functionality of the microservice can
be tested without a full system test.

One of the most important things in system
architecture is communication technologies and
protocols. In this paper, we'll review existing
techniques for microservice communication which
can be applied to IoT systems development.

The object of study is the process of IoT system
architecture development in order to find high-
performance and cost-efficiency solutions.

TELECOMMUNICATIONS AND RADIO ENGINEERING

74 ISSN 1990-5548 Electronics and Control Systems 2022. N 4(74): 73-78

The subject of study is the web microservice
communication techniques and protocols which can
be used to develop Cloud-based IoT systems.

The purpose of the work is to explore the
performance of existing web protocols for different
IoT systems scenarios.

II. PROBLEM STATEMENT

The Internet of Things (IoT) is rapidly becoming
an important part of our lives, with more and more
devices connecting to the Internet every day. One of
the biggest challenges is communication between
microservices. This is because microservices are
often distributed across multiple devices and
networks, making it difficult for them to reliably and
securely communicate with each other.

The following main problems can be identified.

A. A lot of data
There are more and more connected devices

every day, each of which produces huge amounts of
data. However, the capacity of data storage systems
is limited. Storing and managing large arrays
becomes a major challenge. Hence, it has become
imperative to create frameworks or mechanisms that
can collect, store and process data.

B. Large traffic
Systems used for real-time monitoring generate a

lot of traffic. For example, smart traffic lights,
connected cars, and smart home systems. The
system must withstand hundreds of millions of
requests. Connecting across a range of networks,
devices, and contexts increase the likelihood of data
errors and communication losses, which can
compromise the integrity and reliability of systems.

C. Auto-scaling
IoT-based systems often include a large number

of devices that interact with each other to provide a
service. The load on the system is traditionally
uneven. for example, at night it is minimal, during
the day it increases strongly. To support such an
ecosystem we need a large number of servers. But at
night they will be idle. Auto-scaling can help ensure
the efficient use of resources and the system's ability
to handle the current load.

D. Real-time processing
For example smart home systems, connected

cars, and industrial automation systems. Real-time
processing data problems can include issues such as
latency, scalability, and security. Latency is the
amount of time it takes for data to be processed and
for the results to be returned. Scalability is the

ability to handle increased data loads without
compromising performance. Security is the ability to
protect data from unauthorized access. Additionally,
data integrity and privacy must also be taken into
consideration when dealing with real-time
processing data.

E. Concurrency
The concurrency problem is the synchronization

of multiple devices. As the number of connected
devices increases, so does the complexity of
managing them. This can lead to data inconsistency,
as different devices may be operating on different
versions of data. Additionally, if multiple devices
are trying to access the same resource, it can lead to
conflicts and data corruption. This can be mitigated
by using a centralized system for managing the
devices, or by using distributed systems with
appropriate synchronization protocols.

We should research the most popular protocols.
This will help prevent errors and data loss and
increase overall reliability.

III. THEORETICAL BASIS

Each system component in microservice
architecture can be distributed across multiple web
servers or domains. Depending on the data type and
structure should be implemented service
communication methods which should be based on
existing protocols and match the business logic of
the system. We can split existing communication
protocols into Synchronous and Asynchronous. The
most popular protocols and their architectures are
listed in Table I.

TABLE I. APPLICATION LEVEL PROTOCOLS

 Model / Architecture Data
type

Delivery
guaranteed

HTTP/
HTTPS

Sync
Client-Server T False

HTTP2 Async
Client-Server B False

AMQP Async
Pub/Sub B True

MQTT Async
Pub/Sub B True

gRPC Sync/Async
Client-Server B False

Note: Data type – textual (T) or binary (B)

A. Synchronous protocols
Protocols with synchronous logic send requests

and wait for responses. In this case, the next request
can be sent only after finishing the previous one.
Protocols with synchronous logic are easy in

I.V. Zakutynskyi, I.E.Rabodzey
Microservice Communication for IoT-based Systems. Architecture Review and Performance Test 75

implementing and maintaining. Today, the main
protocol of modern web systems is HTTP/HTTPS
(Fig. 1), which is implemented by synchronous logic.

Fig. 1. HTTP protocol schema

B. Asynchronous protocols
In protocols with an asynchronous logic client

(sender) sends a request without a response waiting.
With a non-blocking model, we can achieve

higher sending performance, but the implementation
and maintenance of the system are significantly
complicated.

Such asynchronous protocols as AMQP (Fig. 2),
and MQTT are often used in modern web and IoT
systems.

Fig. 2. AMQP protocol schema

IV. THE LITERATURE REVIEW

The Internet of Things (IoT) has become one of
the most popular technologies of the 21st century.
The first stage of building such a system is the
choice of architecture.

Software architecture based on microservices
design and ideal for easy scaling and efficient
processing of data in real-time [3].

Choosing a protocol for microservice
communication between software and sensors is an
equally important step in the development of systems
based on IoT. Over the past decade, there has been a
lot of research into microservices architectures,
protocols, and types of communication.

For example, in this paper [4], the authors review
and test the performance of three microservice
architecture approaches for real-time data processing.

One very important problem is sending huge
amounts of data to databases, which can
dramatically affect the performance of the entire
system-wide performance. The authors of [5]
propose a solution to this problem using the AMQP
protocol and conduct a comparative study with a
web service, considering the communication
between the client and the server.

If we would like to use core from Google, it
currently supports communication between devices
and the cloud with the use of MQTT and HTTP
protocols.

This article [6] provides a detailed analysis of
MQTT and HTTP using response rate metrics and
packet volume metrics when sending the same
payloads.

There is also research [7] on the gRPC buffer
protocol using the example of comparing the
efficiency of communication tasks between gRPC
and REST.

The paper [8] presented a benchmarking of
HTTP, MQTT, AMQP protocols to real-time public
data on cities.

In general, most of the reviewed papers consider
protocols and test them without detailed analysis and
graphs, comparing no more than two protocols. In
this article, we will review the most popular
microservice communication protocols for IoT-
based systems and perform performance testing.

V. MATERIALS AND METHODS

This research is experimental and analytical
approaches. It also contains a comparison of the
most popular data protocols used in IoT systems.
Performance testing was performed for each
protocol to determine in which case which protocol
is better suited.

Performance tests are performed on device
emulators, which allows you to effectively compare
the capabilities of technologies.

Since the goal is to evaluate the quality of the
protocols, they will be in the same Amazon network
to reduce the impact of the network on the
experiment.

For testing, JavaScript scripts were written using
the Node.JS server environment.

VI. EXPERIMENTS

In this section, we introduce the test scenario for
our experiments. For performance testing, we have
developed custom software that simulates

76 ISSN 1990-5548 Electronics and Control Systems 2022. N 4(74): 73-78

transmission performance measurements using
HTTP, AMQP, MQTT, and GRPC clients. In our
experiment, the tests performed on AWS EC2
instances are detailed in Table II.

TABLE II. TEST SERVER HARDWARE DETAILS

Instance type t2.large
CPU 3.3 GHz Intel Xeon**

Processor
vCPU 2
Mem (GiB) 8
Storage EBS-Only
Network Performance Moderate

The HTTP (Fig. 3) and GRPC protocols (Fig. 4)

have a Client / Server architecture. The client
initiates a request and waits for a response from the
server. For testing, we will need to create two EC2
instances, one for the server and one for the client.

Fig. 3. HTTP Client-Server architecture

Fig. 4. GRPC Client-Server architecture

AMQP and MQTT use a Publisher-Subscriber
architecture (Fig. 5). Messaging consists of three
parts - the publisher sends the message to the broker,
the broker creates a queue and topic, and the
subscriber subscribes to the topic and receives
messages from the broker. In our performance testing
for these protocols, we highlight two options for
testing Publish and Delivery. Using this architecture,
we will need to create three EC2 instances: a
publisher, a subscriber, and a message broker.

Fig. 5. AMQP Publisher-Subscriber architecture

To reduce the impact of network latency as much
as possible, during testing, all instances work in the
same network. The most popular issues are request
processing speed, response time, and poor scalability.

We have selected the main metrics for evaluating
protocol performance (Test 1 – Test 5). Testing
results are listed in Figs 6 – 10.

VII. RESULTS

Test 1. Init connection time. Is the time taken to
complete the initial TCP connection and SSL
negotiation (where applicable).

Fig. 6. Init connection time

The results (Fig. 6) of this test are very similar
for all protocols. But it should be noted that for the
Client-server architecture (HTTP), a new connection
will be established for each request, which will
negatively affect to general performance. Instead,
for other protocols, this action will be performed
only once.

Test 2. Request per second (throughput) is a
measure of how many requests a server can handle
in a second.

Fig. 7. Messages / Requests per second

The results of this test (Fig. 7) indicate that
MQTT/AMQP has a significant advantage over
HTTP/gRPC. Although MQTT/AMQP metrics are
scaled from two Publish/Delivery tests, these
protocols send more messages per unit of time.

The main reason is that the Client-Server
paradigm establishes a new connection for each

I.V. Zakutynskyi, I.E.Rabodzey
Microservice Communication for IoT-based Systems. Architecture Review and Performance Test 77

message transmission, while the Publisher-
Subscriber paradigm can transmit any number of
messages in a single connection.

Test 3. Time to send 1M messages. An important
metric for evaluating a protocol is how much it can
handle over a million requests.

Fig. 8. Time to send 1M messages/requests

This test result correlates with Test 2 (Fig. 7) and
shows a significant advantage of MQTT/AMQP
over HTTP/gRPC.

Test 4. Throughput: Megabytes per second.
Throughput is the data transfer rate and is commonly
measured in bytes per second (b/s).

Fig. 9. Throughput Mb/s

Test 5. Data transferring performance. This test
indicates how many protocols need to transmit such
data size. The test used files from 0.1 to 500
Megabytes. Also, for some protocols, there is a limit
to the maximum message size. Therefore, messages
that exceeded this limit were transmitted in several
batches.

Fig. 10. Data transferring performance
In this test, HTTP performed the best result,

therefore, it is best suited for transferring large files.

VIII. CONCLUSIONS

In this study, we developed an efficient test
environment for analyzing performance application-
level protocols for IoT-based systems. This
environment allows evaluating of the protocol
performance at the system design stage. Based on
the above environment performed tests for the main
protocols for microservice communication: HTTP,
HTTP/2, MQTT, AMQP, and gRPC.

Based on the conducted results, we can evaluate
the difference between asynchronous and
synchronous protocols for different IoT systems
scenarios, and their pros and cons.

The obtained results can be used to design stable
and cost-efficient IoT system architecture.

REFERENCES

[1] Mohammad Nasan. (2022, May). State of IoT – May
2022. [Online]. Available: https://iot-
analytics.com/number-connected-iot-devices.

[2] Wikipedia contributors. (2023, February 2). World
Wide Web Consortium. Wikipedia. [Online].
Available:
https://en.wikipedia.org/wiki/World_Wide_Web_Con
sortium.

[3] U. Zdun, E. Navarro, and F. Leymann, "Ensuring and
Assessing Architecture Conformance to Microservice
Decomposition Patterns," In Maximilien, M.,
Vallecillo, A., Wang, J., Oriol, M. (eds) Service-
Oriented Computing. ICSOC 2017. Lecture Notes in
Computer Science(), vol. 10601, Springer, Cham.
https://doi.org/10.1007/978-3-319-69035-3_29.

[4] Guadalupe Ortiz, Juan Boubeta-Puig, Javier Criado,
David Corral-Plaza, Alfonso Garcia-de-Prado,
Inmaculada Medina-Bulo, and Luis Iribarne, "A
microservice architecture for real-time IoT data
processing: A reusable Web of things approach for
smart ports," Computer Standards & Interfaces, vol.

78 ISSN 1990-5548 Electronics and Control Systems 2022. N 4(74): 73-78

81, 2022, 103604, ISSN 0920-5489,
https://doi.org/10.1016/j.csi.2021.103604.

[5] Joel Fernandes,& Ivo Lopes, & Joel Rodrigues, &
Sana Ullah, "Performance evaluation of RESTful web
services and AMQP protocol," International
Conference on Ubiquitous and Future Networks,
ICUFN, 2013.
https://doi.org/10.1109/ICUFN.2013.6614932

[6] Charlie Wang, HTTP vs MQTT: A tale of two IoT
protocols, 2018, November. [Online]. Available:
https://cloud.google.com/blog/products/iot-
devices/http-vs-mqtt-a-tale-of-two-iot-protocols

[7] Marek Bolanowski, & Kamil Żak, & Andrzej
Paszkiewicz, & Maria Ganzha, & Marcin Paprzycki,
& Piotr Sowiński, & Ignacio Lacalle Úbeda, & Carlos
Palau, Eficiency of REST and gRPC realizing
communication tasks in microservice-based
ecosystems, 2022. 10.48550/arXiv.2208.00682.
https://doi.org/10.3233/FAIA220242

[8] Cavide Gemirter, & Sebnem Baydere, A Comparative
Evaluation of AMQP, MQTT and HTTP Protocols
Using Real-Time Public Smart City Data, 2021.
https://doi.org/10.1109/UBMK52708.2021.9559032.

Received November 18, 2022

Ihor Zakutynskyi. ORCID 0000-0003-2905-3205. PhD student.
Radio Electronic Devices and Systems Department, Faculty of Air-navigation, Electronics and Telecommunications,
National Aviation University, Kyiv, Ukraine.
Education: National Aviation University, Kyiv, Ukraine, (current time).
Research area: neural networks, software development, automation systems.
Publications: 6.
E-mail: ihor.zakutynskyi@nau.edu.ua

Ihor Rabodzei. ORCID 0000-0002-2505-5249. Master's.
Department of Information Technology Security, Faculty of Cyber Security, Computer and Software Engineering,
National Aviation University, Kyiv, Ukraine.
Education: National Aviation University, Kyiv, Ukraine, (current time)..
Research direction: neural networks, software development, automation systems.
Publications: 1.
E-mail: igor.rabodzei@gmail.com

І. В. Закутинський, І. Є. Рабодзей. Мікросервісна комунікація для IoT систем. Огляд архітектур та
порівняння продуктивності
Важливим етапом у розробці сучасних IoT систем є вибір комунікаційних технології та протоколів.
Комунікацію IoT системи умовно можна розділити на дві частини: зв’язок між пристроями та хмарними
сервісами та зв’язок між хмарними мікросервісами (програмний рівень). У цій роботі розроблено середовище
тестування для оцінювання продуктивності протоколів програмного рівня. Пропоноване середовище дозволяє
емулювати IoT систему з низькою затримкою мережі, що дозволяє ефективно оцінити та порівняти
продуктивність та архітектуру протоколів, а також доцільність їх використання у тих чи інших ситуаціях.
Проведено тести для найпопулярніших протоколів програмного рівня: HTTP, MQTT, AMQP і GRPC.
Оцінювання продуктивності проводилося на основі таких показників як: пропускна здатність, паралельність,
масштабованість, та час початкового з’єднання. Отримані експериментальні результати та середовище
тестування можна використовувати при проектуванні хмарної архітектури сучасних IoT систем.
Ключові слова: інтернет речей; протоколи комунікації; оцінка продуктивності; мікросервісна комунікація;
MQTT; HTTP; AMQP; GRPC.

Закутинський Ігор Володимирович. ORCID 0000-0003-2905-3205. Аспірант.
Кафедра електроніки, робототехніки і технологій моніторингу та Інтернету речей, Факультет аеронавігації,
електроніки та телекомунікацій, Національний авіаційний університет, Київ, Україна.
Освіта: Національний авіаційний університет, Київ, Україна, (2019).
Напрям наукової діяльності: нейронні мережі, розробка програмного забезпечення, системи автоматизації.
Кількість публікацій: 6.
E-mail: ihor.zakutynskyi@nau.edu.ua

Рабодзей Ігор Євгенович. ORCID 0000-0002-2505-5249. Магістр.
Кафедра безпеки інформаційних технологій, Факультет кібербезпеки, комп’ютерної та програмної інженерії,
Національний авіаційний університет, Київ, Україна.
Освіта: Національний авіаційний університет, Київ, Україна (2019).
Напрямок досліджень: нейронні мережі, розробка програмного забезпечення, системи автоматизації.
Кількість публікацій: 1.
E-mail: igor.rabodzei@gmail.com

