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Abstract—This paper presents a nano circuit of a full one-bit adder on the proposed five-input majority
element. This innovative full adder design is used to development of a four-bit adder based on it. We offer
a new single-bit full adder and a four-bit adder nano circuit in quantum-dot cellular automata
technology. The proposed design four-bit adder utilizes only 231 quantum cells in a 0.49 um?2 area. It has
a reduction in the number of cells, delay and energy dissipation at 1 K compared to the existing works.
The QCADdesigner version 2.0.3 tool implements the developed quantum-dot cellular automata full
adder and four-bit adder circuits. The implementation results show that the developed quantum-dot
cellular automata full adder and four-bit adder circuits have an improvement over other quantum-dot

cellular automata full adder circuits.

Index Terms—quantum-dot cellular automata; majority element; full adder; computer-aided design

systems; high performance design.
I. INTRODUCTION

Computer arithmetic plays an important role in
the information and communication applications
such as a arithmetic logic unit (ALU) and
cryptography. Full adders have an important role in
computer arithmetic. So, the efficiency of many
computer arithmetic applications is primarily
determined by the efficiency of the full adder
implementation [1] — [3].

Quantum-dot  cellular  automata  (QCA)
technology is a promising technology, which can
continue the Moore’s law development. This
technology uses charge formation to information
transition instead of current. As a result, circuit
design in the QCA technology has advantages in
comparison with conventional technologies such as
CMOS technology in terms of small dimension, fast
operation and low power consumption [4], [5].

Comparing the results of previous years' work to
improve the efficiency of the implementation of a
full adder in QCA technology [6] — [15]. In article
[6] present a QCA full adder that requires 102 QCA
cells and 0.1 pm® area. The scientists [7] designed a
QCA full adder that consists of 52 QCA cells and
0.038 pm® area. The authors [8] designed a QCA full
adder that requires 59 QCA cells and 0.043 pm’
area. In article [9] have offered a QCA full adder
that requires 71 cells and 0.06 pm” area. The authors
[10] presented a QCA full adder that requires 38
QCA cells and 0.02 pm® area. The scientists [11]

constructed a QCA full adder that consists of 41 QCA
cells and 0.04 um” area. In article [12] have presented
a QCA full adder that requires 63 QCA cells and 0.05
um’ area. The scientists [13] designed a QCA full
adder that requires 29 QCA cells and 0.02 pm? area.
However, these full adder circuits have advantages,
but the complexity and required area of full adder
circuit in the QCA technology can be reduced with a
described new technique in this paper.

II. BACKGROUND

Quantum-dot cellular automata technology is an
emerging technology that can be utilised for
developing digital circuits based on Moore’s law.
This new technology uses charge formation instead
current for information transition. The basic element
in this technology is a four dots square, which has
two free electrons. Figure 1 shows the basic cell of
the QCA, two methods of its placement in space and
the polarization of electrons [6].

Logical majority element and inverter. Placing the
cells in sequence one after another and causing them
to interact with each other, it is possible to ensure the
flow of information along such a conductor.
Theoretically, there are two methods of constructing a
conductor depending on the 45-degree or 90-degree
orientation of the cells, but it is technologically
difficult to produce nanocells with different
orientations. With the help of QCA, various
elements can be constructed to perform logical and
arithmetic ~ operations. = The  basic  logical
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nanocomponents in the theory of cellular automata
are the majority element (ME) and the inverter

(Fig. 2) [6].
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Fig. 1. Basic cell of the QSA, two methods of its
placement in space and the polarization of electrons

Fig. 2. Three-input majority element (a) and inverter (b)
based on cellular automata.

The polarization of the ME output cell coincides
with the polarizations of most input cells.
Boolean expression for the majority function:

maj(xz, X1, XO) =xx1Vx2x0V X1 X0,

where x,, x; and x, are input arguments. Fixing the
polarization of one of the inputs of the majority of
an element as a logical “0” or a logical “1” allows
you to obtain AND or OR elements, respectively:

maj(xz, X1, 0) =X2 X, maj(xz, X1, 1) =x, V Xx].

Such cells can be created in the process industrial
manufacturing, which eliminates the need to
maintain direct current through scheme.

I11. THE DESIGNED QCA FULL ADDER CIRCUIT

When using five-way MEs, you can build the most
rational and simple one-bit adder scheme. The
structural diagram of a one-bit adder is built on one
five-input ME and one three-input (Fig. 3).
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Fig. 3. Circuit of a one-bit adder based on a five-input ME

The results of the computer design of this nano
circuit using CAD QCAD are shown in Figs 4 and 5.
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Fig. 5. Modeling the time characteristics of a full one-bit
adder on a five-input ME

The implementation results of the designed circuit
for the one-bit QCA full adder confirm the
correctness of this circuit.

The functions of addition S and transfer C are
determined by the rules of addition in the majority
basis [7]:
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S zmaj(x],xO,Co,é) =C(x,vx,vCy)vxx,C,,
C =maj(x,,x,,C,) =x, vx,vx,Cyvx,C,.

The developed full-adder nano circuit is based on
41 KA, and its total size is (288x162) nm.

Three clocking zones are utilized in this circuit as
follows: light blue indicates clock zone 2, violet
indicates clock zone 1, and green indicates clock
zone 0.

Table I summarizes the implementation results of
the designed circuit for the one-bit QCA full adder
compared to other one-bit QCA full adder circuits in

[8] - [16].

[16] 46 0.04 q

This paper 41 0.07 4

TABLE 1. THE COMPARATIVE TABLE FOR ONE-BIT
QCA FULL ADDER CIRCUITS

Reference Co?#lggl’)ﬂty Area (umz) Delzzn(:;OCk
[8] 102 0.1 8
[9] 71 0.06 5
[10] 52 0.038 4
[11] 59 0.042 4
[12] 38 0.02 3
[13] 41 0.04 2
[14] 63 0.05 3
[15] 29 0.02 2

IV. COMPUTER ADDICT DESIGN OF A FOUR-BIT
ADDER

On the basis of a one-bit full adder, a four-bit
adder was built, the structural diagram of which is
presented in Fig. 6.
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Fig. 6. Circuit of a four-bit adder based on a full one-bit
adder

Computer addict design of nano circuit the four-
bit adder is shown in Fig. 7.

Figure 8 shows the implementation results of the
designed nano circuit for the four-bit adder.
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Fig. 7. The designed nano circuit of the four-bit adder
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Fig. 8. The implementation results of the designed nano circuit for the four-bit adder
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0. C. MeabHuk, M. M. Kpaseupn,
I’ ITHBXOOBHMHU MAKOPUTAPHUMU eJIeMEHTAMU

B. M. Kpagenp.

YoTupupo3psaaHuii HAHOCYMATOpP, KepOoBaHMIA

Y po0oTi npencTaBIeHo0 HAHOCXEMY ITOBHOT'O OTHOPO3PSJHOTO CyMaTopa Ha PO3pOOJICHUX MaKOPUTAPHHUX EIEMEHTax 3
m’aTbMa BXoJaMu. Ll mporpecMBHa KOHCTPYKIISI MOBHOTO CymMaropa BUKOPUCTOBYETHCS JJIsi PO3POOKH HOBOI
HAHOCXEMH YOTHPHPO3PSITHOTO CyMaTopa. 3arporoHOBaHO HOBHIA OJJHOPO3PSAHHI OBHUI CyMaTOp 1 YHOTUPUPO3PSAHY
HAHOCXEMY 3a TEXHOJIOTIE€I0 KBAHTOBUX aBTOMaTiB. CTBOpPEHHI YOTUPUPO3PSAHUI CyMaTOp BUKOPHCTOBYE e 231
KBAHTOBY KOMipKy Ha mromi 0,49 MM, B pe3ynbTaTi BiH Mae 3MeHIIEHY KiTbKiCTh KOMIpOK Ta 3MEHIICHI 3aTPHMKH i
poscitoBanHs eHeprii npu 1 K mopiBHSHO 3 BioMUMH pe3ynbraTaMu. PearizoBaHO KOMIT IOTEpHE MPOEKTYBaHHS IIOBHOT
HAHOCXEMH YOTHPHPO3PSIHOrO CyMaTopa Ha 0a3i YOTHPHOX OXHOPO3PSAAHHX CYMATOPIB i3 3aCTOCYBAHHAM CHCTE MH
aBTOMATH30 BAHOTO npoeKTyBé Hus1 QCAdesigner Bepcii 2.0.3. Pe3yabpTaTi eKCHepeMEHTAIBHUX JOCITIHKEHb BKAa3YIOTh
Ha HOro MepeBakHi XapaKTEePUCTHKHU, OCOOJIMBO i3 3aCTOCYBAHHSM IT’ITUBXOJIOBUX Ma)KOPUTAPHUX EIEMEHTIB.
Karo4oBi cioBa—KOMIpKOBi aBTOMaTH 3 KBAHTOBUMH TOYKaMH; Ma)KOPUTAPHUI €JIEMEHT; TOBHUI CyMaTOp; CUCTEMH
aBTOMaTHU30BaHOT'O MPOEKTYBaHHS; BUCOKA MPOIYKTUBHICTh KOHCTPYKIIIi.
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