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Abstract—Accurately predicting the urban traffic passenger flow is of great importance for
transportation resource scheduling, planning, public safety, and risk assessment. Traditional statistical
approaches for forecasting time series are not effective in practice. They often require either strict or
weak data stationarity, which is almost impossible to obtain with real data. An alternative method is time
series forecasting using neural networks. By their nature, neural networks are non-linear and learn based
on input and output data. With this approach, increasing the efficiency of the network is reduced to
increasing the amount of data of the initial sample. Today, the class of recurrent neural networks is
mainly used for forecasting time series. Another important stage is the choice of neural network
architecture. In this article the use of long short term memory and gated recurrent units architecture is
considered and also is compared their performance for passenger flow forecasting.

Index Terms—Neural networks; recurrent neural networks; LST Marchitecture; GRU architecture; time

series; passenger flow.
I. INTRODUCTION

Recurrent neural networks (RNN) are a class of
artificial neural network which connections between
nodes form a time-oriented graph. This creates an
internal state of the network that allows it to exhibit
dynamic behavior in time. Unlike feed forward
neural networks, RNN’s can use their internal
memory to process arbitrary sequences of inputs.

In article a comparison of the efficiency for the
two most popular architectures of recurrent neural
networks long short term memory (LSTM) and
gated recurrent units, controlled recurrent neurons
(GRU) is considered.

The purpose of the work is the development of
the neural network based on LSTM and GRU
architectures, using Python and Keras library with
the comparison of obtained results, and the choice of
the best architecture for passengers flow forecasting.

II. PROBLEM STATEMENT

The neural network 1is intendedto predict
passengers of international airlines, based on the
dataset "Airline passengers January 1949 to
December 1960" [1], which is publicly available.
The data cover the period of 12 years with 144
observations (Table I).

As a result, the developed neural network should
predict the number of passengers of international
airlines for years that are not in this sample.

TABLE I. AIRLINE PASSENGERS FROM 1949 TO 1960

Year/Month Number of Passengers
1960/05 472
1960/06 535
1960/07 622
1960/08 606
1960/09 509
1960/10 461
1960/11 390

III. THEORETICAL BASIS

Artificial Neural Network (ANN) is a
mathematical model to simulate the network of
biological neurons that make up a human brain so
that the computer will be able to learn things and
make decisions in a humanlike manner.

Recurrent neural networks is an artificial neural
network which powerful to handle sequential data.
As shown in Fig. 1 [2], RNN has the hidden layer
which are sort of intermediate snapshots of the
original input data.

Figure 2 shows the unfolding in time the data,
which involved in forward computation. Also
presented in Fig. 2, the output is produced from
input through neural network [6]. The loops transfer
the data to the next step. Via the loops, each
independent data becomes dependent on each other.
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Fig. 2. Recurrent connections

Recurrent neural networks can be seen as
multiple copies of the same network.

In classical architectures of recurrent neural
networks, the information at each learning step is
mixed with the information of the previous steps, thus
erasing it during several iterations. The main problem
of classical RNN architecture is short-term memory.
If a sequence is long enough, they’ll have a hard time
carrying information from earlier time steps to later
ones. So in recurrent neural networks layers, that get a
small gradient update stops learning. Those are
usually the earlier layers. So as these layers don’t
learn, RNN’s can forget (1) what it seen in longer
sequences, thus having a short-term memory [5]

W =W, -kG, (1

where W is new weight value; W, is current weight;
kis learning rate; G is gradient value; ¢ is learning
step.

A.  Long Short Term Memory

The architect's LSTM is designed in such a way
that the data of a particular step is stored for both
short and long time intervals, which avoids the

problem of long-term dependence. A special feature
is that the LSTM module does not use an activation
function. Instead of neurons, LSTM networks have
blocks of memory connected through layers.

A block contains gateways that control the state
and output of the block. The block operates based on
an input sequence, and each gate in the block uses
sigmoidal activation blocks to control whether it
fires or not, making the state change and addition of
information passing through the block conditional.

In this case, LSTM neurons are used as nodes of
a recurrent neural network.

In the first step, the LSTM determines what
information can be removed from the current state.
This logic performed by the sigmoid layer — Forget
gate layer, Fig. 3 [3]. This layer checks hidden input
data %, _,, input data vector x, and return O or 1

using relation (2).
fi=o(xU’ +n_w"). )
where f, is forget gate layer; o is sigmoid

function; U/, W/ is weight vectors for forget gate.
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Fig. 3. LST™ cell

In Figure 3 C, is hidden input vector; a, i, are
bias vectors.

At the next stage, it is decided which data from
the current step will be stored. This process consists
of two parts:

1) The sigmoid layer (input gate layer)
determines which of the current data needs to be
updated

i, =o(xU' +h W'). 3)

2) The layer based on the hyperbolic tangent
function builds a vector of new values, that will be
added to the current ones

C, =tanh(x,Ug +h,,1Wg), 4

where W¥ is array of weights; C, is vector of new
candidate values.
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3) The previous value of C, is replaced by the
new state (5)

C,=o(fC_ +iC). (5)

At the last stage, the original data layer is
determined using current state and some filters.

0,=o(xU°+h_ W), (6)

Firstly a sigmoidal layer o,[0, 1] is used (6) for
determination output data from the current state.
After that the original values are normalized to the
range [—1, 1]

h, =tanh(C,)-o,. (7

B. Gated Recurrent Units

The Gated Recurrent Unit mechanism in
recurrent neural networks was introduced in 2014.
GRUis similar to long short memory with a forget
gate, but have less parameters exit gate does not
exist.

The main difference between the GRU
architecture and the LSTM is that the filtering
units (forgetting) and input filters are combined
into one filter — the Update gate filter, Fig. 4 [4].
Also current state combines with hidden. As a
result, this architecture significantly simplifies the
model implementation.

ey

Fig.4. GRUcell

Gated recurrent units does not possess any
internal memory, they don’t have an output gate
that is present in LSTM.

IV. MODEL IMPLEMENTATION

The model is designed forthe international airline
passengers prediction. For given input year and
month it is necessary predict the number of
international airline passengers in units of 1.000.

The data ranges from January 1949 to December
1960 or 12 years, with 144 observations

(Fig. 5).There is a certain periodicity that corresponds
to the holiday period, and the vacation period.
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Fig. 5. Input dataset visualization

Long Short Term Memory and GRU networks
are quite sensitive to the scale of the input data.
Especially when sigmoid or tan/ activation
functions are used. So, the data must be normalized
to the range [0, 1]. In Python for this is used the
MinMaxScaler preprocessing class from the
scikitlearn library.

Also, we need to divide the input data into
training and testing samples. Input data is divided as
follows — 67% initial sample (train), 33% test (test).
For the network training the new dataset was
created, where X is the number of passengers at a
certain time(¢) and Y is the number of passengers at
the next time (¢ + 1).

An LSTM network expects that input data (X) is
provided by some array structure in the form of
[samples, time steps, features].

A neural network consists of: a visible layer with
1 input, 2 hidden layers with 64 blocks of LSTM
neurons, and an output layer that makes a prediction
of a single value. For LSTM blocks the default
activation ReLu (8) function f{u) is used, Fig. 6.

f(u)=max(0,u). ®)

Fig. 6. RELU activation function
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The network is trained in different epochs,
hidden layers count with package size = 1. Applied
Adam algorithm for model optimization is a
stochastic gradient descent method that is based on
adaptive estimation of first-order and second-order
moments.

The network quality is checked with a loss
function cost (mean squared error), which
determines the difference between the original
(predicted values) and the previously known values

1 212
costzzg(K—Y;) . ©)

The basis of neural network learning is the
minimization of cost value.

For both networks (LSTM and GRU) the similar
training process (Fig. 7) was applied.
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Fig. 7. Learning Process structure

The data on model accuracy according to epochs
are in Table II.

According to the above data the best result
(86.83% accuracy) got with LSTM architecture and
50 “learning” epochs.

Also can be noticed the decline model
performance point (LSTM > 50k Epochs). This is
the moment of saturation, or network retraining
moment.

In the result graphs (Figs 8 — 11) the best results
for both networks (LSTM — 100 Epochs, GRU — 10
Epochs) are given.
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TABLE II. LSTM AND GRU MODELS ACCURACY
Model Accuracy | Error rate

LSTM (10 Epochs) 71.18% 28.82%
GRU (10 Epochs) 67.11% 32.89%
LSTM (30 Epochs) 73.64% 26.36%
GRU (30 Epochs) 61.02% 38.98%
LSTM (50 Epochs) 86.83% 13.17%
GRU (50 Epochs) 67.12% 32.88%
LSTM (100 Epochs) 86.1% 13.9%
GRU (100 Epochs) 67.18% 32.82%
LSTM (1000 Epochs) 71.18% 28.82%
GRU (1000 Epochs) 67.11% 32.89%
LSTM (10k Epochs) 81.39% 18.61%
GRU (10k Epochs) 67.05% 32.95%
LSTM (50k Epochs) 76.82% 23.18%
GRU (50k Epochs) 66.22% 33.78%
LSTM (100k Epochs) 53.68% 46.32%
GRU (100k Epochs) 66.16% 33.84%
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Fig. 8. LSTMnetwork accuracy with train data

In these graphs X axis is the month number, Y
axis is the passengers count. The main line shows
the input data, the auxiliary one — the result of the
model forecast.
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Figures 8 and 10 represent network accuracy
with train data. It this case both networks show
similar good results. But real network performance
can be seen at Figs 9 and 10 (network prediction
based on the test data).
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Fig. 10. GRU network accuracy with train data
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Fig. 11. GRU network accuracy with train data
The results can be considered satisfactory.
V. CONCLUSIONS

The results show that RNN’s are well suited for
forecasting time series data (like passengers flow),
but have some problems with shot-memory.
Therefore for airline passenger prediction the
architect's LSTM and GRU were considered.

For this dataset the LSTM network showed better
results (86.83% accuracy) in comparison with GRU
(67.12% accuracy). According to the small size of
the input data set, both results can be considered as
good. An increase in forecasting accuracy is
associated with greater volume of the input data.

So, neural networks based on LSTM architecture
can be used for nonlinear, long-term data prediction
with high accuracy. Recurrent neural networks based
on GRU architecture is less accurate than the LSTM
but has the advantage of being relatively simple with
relatively good performance and low computing
time.

REFERENCES

[1] Chirag Kothari, US Airline passengers from 1949 to
1960. Kaggle. 2018, April. [Online]. Available:
https://www.kaggle.com/datasets/chirag19/air-

passengers.
[2] Jayesh Bapu Ahire, The Artificial Neural Networks.
Part 1, 2018, August. [Online]. Available:

https://www.datasciencecentral.com/the-artificial-
neural-networks-handbook-part-1.

[3] Savvas Varsamopoulos, and Koen Almudever,
“Designing neural network based decoders for
surface codes,” pp. 1-12, Nov. 2018.

[4] Christopher Olah, Understanding LSTM Networks.
2015, August. [Online]. Available:
http://colah.github.io/posts/2015-08-Understanding-
LSTMs.

[5] Michael Phi, “Illustrated Guide to LSTM and GRU,”
Medium Blog. 2018, September. [Online]. Available:
https://towardsdatascience.com/illustrated-guide-to-
Istms-and-gru-s-a-step-by-step-explanation-
44¢9¢eb85bf21.

[6] Fulvia Ceccarelli, and Marco Sciandrone,
“Prediction of chronic damage in systemic lupus
erythematosus by using machine-learning models,”

Plos  One. 12(3), 2017, March. Available:
https://journals.plos.org/plosone/article?id=10.1371/j
ournal.pone.0174200.

https://doi.org/10.1371/journal.pone.0174200

[7] Kyungdoo Nam and Thomas Schaefer, Forecasting
international airline passenger traffic using neural
networks, pp. 239-252. 1995, September. [Online].
Available:
https://www.researchgate.net/publication/233684273
_Neural network forecasting for airlines A compa
rative_analysis.

[8] Diederik P. Kingma, and Jimmy Lei Ba, “Adam: A
method for  Stochastic  Optimization,”  3rd
International Conference for Learning
Representations, San Diego. 2015, June. [Online].
Available: https://arxiv.org/abs/1412.6980

[9] Bowen Du, and Hao Peng, “Deep Irregular
Convolutional Residual LSTM for Urban Traffic
Passenger Flows Prediction,” [EEE Transactions on
Intelligent Transportation Systems, 2020, March,
pp. 972-985.
https://doi.org/10.1109/TITS.2019.2900481

[10]W. Min, and L. Wynter, ‘“Real-time road traffic
prediction  with  spatiotemporal  correlations,”
Transportation ~ Research Part C: Emerging
Technologies, vol. 19, no. 4, pp. 606616, August
2011. https://doi.org/10.1016/j.trc.2010.10.002

[11]A. Abadi, T. Rajabioun, and P. A. Ioannou, “Traffic
flow prediction for road transportation networks with



L.V. Sibruk, L.V. Zakutynskyi Recurrent Neural Networks for Time Series Forecasting. Choosing
the best Architecture for Passenger Traffic Data 43

limited traffic data,” IEEE Trans. Intell. Transp. [13]S. Haykin, Neural networks. A comprehensive

Syst., vol. 16, no. 2, Apr. 2015, pp. 653—662. Foundation. Second edition, in Prentice Hall, 2020,
[12]Quang Hung Do, “Forecasting Air Passenger pp. 919-925.
Demand: A Comparisonof LSTM and SARIMA,” Received January 28.2022

Journal of Computer Science, 16(7): 1063, Jul, 2020.
https://doi.org/10.3844/jcssp.2020.1063.1084

Leonid Sibruk. ORCID 0000-0002-4119-7984. Doctor of Engineering Science. Professor.

Radio Electronic Devices and Systems Department, Faculty of Air-navigation, Electronics and Telecommunications,
National Aviation University, Kyiv, Ukraine.

Education: Kyiv Institute Engineers of Civil Aviation, Kyiv, USSR, (1974).

Research area: Antennas, propagation, radio monitoring, communications.

Publications: more than 180 papers.

E-mail: sibruk@nau.edu.ua

Thor Zakutynskyi. ORCID 0000-0003-2905-3205. Post-graduate student.

Radio Electronic Devices and Systems Department, Faculty of Air-navigation, Electronics and Telecommunications,
National Aviation University, Kyiv, Ukraine.

Education: National Aviation University, Kyiv, Ukraine, (current time).

Research area: Neural networks, Software development, Automation systems.

E-mail: ihor.zakutynskyi@nau.edu.ua

JI. B. Ciopyk, 1. B. 3akytnHcbkuii. PexypenTHI HelipoHHi Mepe:ki 1/ NPOrHO3yBaHHS 4acoBUX psAnaiB. Bu6ip
ONTHMAJILHOI apPXiTeKTYPH ISl IPOTHO3YBAHHS MACAKUPONOTOKY

TouHe NPOrHO3yBaHHS MMACaKUPOIIOTOKY MICHKOTO TPAHCIIOPTY MAa€ BEJIUKE 3HAYCHHS /ISl IJIaHYBaHHS TPAHCIOPTHHX
pecypciB, TpoMaJICbkoi Oe3MeKku Ta OLIHKK PU3MKIB. TpajumiiiHi CTaTHCTHYHI MiIXOAW O HMPOrHO3YBaHHS YaCOBHX
psniB He eeKTHBHI Ha MpakTHLi. BoHNM yacTo BuMararoth abo cyBopoi, a00 ci1abKoi cTalioHapHOCTI JaHuX, Ky Maibke
HEMOJJIMBO OTPHMAaTH 32 pEaJbHUMHU JaHUMHU. AJIBTEPHATHBHHM METOJIOM € TPOTHO3YBaHHS YAacOBHX pSIIiB 3a
JIOTIOMOT'OI0 HEWPOHHUX MeEpeX. 3a CBOEI0 NMPUPOJOI0 HEHPOHHI MEpeXi € HEeNiHIMHUMH i HaBYAIOThCS Ha OCHOBI
BXI/IHHMX 1 BUX1THHUX JaHuX. [Ipu TakoMy MiAX oAl MiABHIIEHHS epEKTUBHOCTI MEPEkK] 3BOJJUTHCS 0 301IbIICHHS 00CsTY
JAaHUX BHXiAHOI BHOiIpku. ChOromHI Ui MPOTHO3YBAaHHS YaCOBUX ps/iB B OCHOBHOMY BHKOPHCTOBYETBHCS Kiac
PEKYpEHTHUX HelpoHHuX Mepex. llle oHUM BakKIMBUM eTanoMm € BUOIp apXiTeKTypH HEHpOHHOI Mepexi. Y naHii
CTaTTI PO3MIIAAAETHCS BUKOPHUCTAHHS apXiTekTypu HedpoHHHX Mepex LSTM i GRU, a Takox NOpIBHIOETHCS
e(QEeKTUBHICTb X BUKOPUCTAHHS [UIsl IPOrHO3YBAaHHSI MTACAXKUPOITOTOKY.

KarouoBi ciioBa: HelipoHHI Mepexi; peKypeHTHI HeHpoHHI Mepexi; apxitekrypa LSTM; apxitekrypa GRU; uacoBi
PsIU; TACAXKUPOIIOTIK.
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JI. B. Cuopyk, U. B. 3akyrunckuii. PekyppeHTHbIe HeiipoHHBIE ceTH /ISl IPOrHO3MPOBAHUSI BPeMEHHBIX PS/I0B.
Bb100p onTHMANBHON APXUTEKTYPHI VI POTrHO3MPOBAHUS MACCAKUPONOTOKA

TouHOe NPOrHO3UPOBAHKE MACCAXKUPOIIOTOKA TOPOJICKOTrO TPaHCIOPTa UMeeT OOJIbIIOe 3HAUEHUE I IIaHUPOBaHUS
TPAHCIIOPTHBIX PECYPCOB, OOIIECTBEHHOIH 0E30MaCHOCTH M OIIEHKH PUCKOB. TpaJMIMOHHBIE CTATHCTHYECKHE MOIXOJIbI
K MPOTHO3UPOBAHUIO BPEMEHHBIX PSIOB He 3((eKTHBHBI Ha mpakTuke. OHM yacTo TpeOyroT MO0 CTPOroi, arbo
c1aboi CTaMOHAPHOCTH JAaHHBIX, KOTOPYIO TOYTH HEBO3MOXKHO MOJYYUTh HAa PEasIbHBIX JaHHBIX. AJIbTEpPHATHBHBIM
METOZIOM SBJISIETCS IPOTHO3UPOBAHHME BPEMEHHBIX PAIOB C IOMOIIBIO HeWpoHHBIX cereil. Ilo cBoelt mpupone
HEWpOHHBIE CETH HENMHEeWHBI W O0y4aloTCsi Ha OCHOBE BXOAHBIX M HCXOJAHBIX JaHHBIX. lIpu Takom momxosme
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MOBBIIIEHHE S(PPEKTUBHOCTH CETH CBOMUTCS K YBEIMYEHUIO OObeMa IaHHBIX WCXOAHOW BbIOOpkH. CeromHs s
IIPOTHO3UPOBAHUS BPEMEHHBIX PAOB B OCHOBHOM HCIIONB3YETCS KJIACC PEKYPPEHTHBIX HEHpOHHBIX ceTeil. Eme onHum
Ba)KHBIM 3TAIlOM SIBJISIETCS BHIOOp apXHUTEKTYphl HEHPOHHOH ceTH. B JaHHOM cTaThe paccMaTpUBAETCS MCIONB30BaHUE
apxutekTypsl HedpoHHbIX cereii LSTM u GRU, a Tarke cpaBHHBaercsi 3()()eKTUBHOCTh MX HCIIOJIB30BAHUS IS
MIPOTHO3UPOBAHUS TACCAKHUPOIIOTOKA.

KuaroueBble cjioBa: HeHpoHHBIE CeTH; peKyppeHTHbIe HeWpoHHbIe ceTtH; apxurektypa LSTM; apxurextypa GRU,;
BpPEMEHHBIE PAJBI; TACCAKUPOIOTOK.
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