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Abstract—The paper deals with improving methods of processing data in measuring instruments with
non-orthogonal orientation of inertial sensors. The method of processing measuring information based
on neural networks is represented. The method for searching failures of separate semsors in the
redundant non-orthogonal measuring instrument based on neural networks is proposed. The method for
widening the dynamic range of redundant non-orthogonal measuring instrument is described. The
appropriate calculating procedures are represented in details. Description of the represented methods is
accompanied by representation of modelling results. The proposed approach ensures improving accuracy
and reliability of measurements. The obtained procedures can be especially useful for designing
measuring instruments assigned for application in unmanned aerial vehicles.

Index Terms—Non-orthogonal measuring instrument; inertial sensor; neural network; search of failures;

dynamic range.
I. INTRODUCTION AND PROBLEM STATEMENT

One of the important problems in the
development of inertial sensors is the processing of
redundant information. Solving this problem leads to
an increasing in the accuracy of navigation
information and, accordingly, the successful
functioning of moving objects, in particular UAVs.

Designing low cost inertial measuring
instruments with improved operating characteristics
is one of the most important trends in modern
device-building. One of the most efficient ways to
improve accuracy and reliability of measuring
information in navigation and motion control
systems is usage of functional redundancy [1] — [3].
In this case, the maximum accuracy and reliability of
measuring can be achieved for non-orthogonal
configuration of inertial sensors [4] — [6]. Such an
approach is especially useful for application in
unmanned aviation.

One of the most important issue in the above-
mentioned approach is processing redundant
information. Using different methods, is possible to
improve accuracy and reliability of navigation data
by algorithmic means.

There are traditional methods of processing
information in measuring instruments based on non-
orthogonal configurations of inertial sensors. They
are based on the theory of statistical solutions and
mathematical statistics. The method of maximum
likelihood is convenient to use for known probable
characteristics of measuring errors. In this case, the
covariation matrix of errors is determined on the

basis of experimental data. The least square method
is usually used in situations, when a priori data about
properties of estimated parameters and their
measuring errors are absent.

There are different methods for improving
navigation information, for example, optimal
recurrent Kalman filtration. But using such methods
requires a priori information about dynamic
characteristics of the system. In practical situations,
this information, usually, is not available. This
decreases reliability of the obtained estimates. It is
convenient to use new methods of information
processing.

The goal of the article is developing methods of
processing data in measuring instrument with non-
orthogonal orientation of inertial sensors based on
neural network technologies. Using functional
redundancy ensures also the possibility to improve
resistance to failures and to widen functional
possibilities of the measuring instrument.

II. THE METHOD OF PROCESSING MEASURING
INFORMATION BASED ON NEURAL NETWORKS

Improvement of measurement procedures can be
implemented based on the use of non-linear
mathematical models of measurement objects and
modern optimization algorithms, such as genetic
algorithms, fuzzy logic, evolutionary programming,
and neural networks. Neural network technology is
one of the most developed from the point of view of
software implementation [7], [8]. Therefore, it is
most applicable in such practical situations as signal
measurement, algorithms for processing redundant
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information, diagnostics of failures in engineering
systems, etc. The efficiency of the neural network
depends on its assimilation during navigation
information processing. The main goal of the
method is to ensure the minimum measurement error
at the output of the neural network.

The object of research is a redundant non-
orthogonal measuring instrument based on MEMS
inertial sensors. This device uses the tetragonal
pyramid as a structural element and five three-axis
measuring units, i.e. 15 single-axis inertial sensors,
respectively [9]. Therefore, to determine the
projection of the angular velocity of a moving object
in the traditional way, it is necessary to perform
calculations using the 15x15 dimension conversion
matrix. It is possible to increase the accuracy of
processing navigational information by methods for
processing redundant information. The use of an
information processing method based on neural
networks allows you to identify three inertial sensors
that are characterized by the highest accuracy.
Namely, these sensors are further used for
navigation calculations. This approach avoids
intricate calculations associated with the use of
matrices. Next, the angular velocity projections of
the moving object in the navigation system can be
determined based on the measurements of the
chosen inertial sensors. The implementation of such
a method ensures a reduction in measurement error
and information processing time.

The output information of the non-orthogonal
measuring inertial unit can be presented in the
following form

o, =ko, +o,+k At
o, =ko, +o,+kAt, (1

0, =ko +o,+kAt,

where o, is the projection of the angular rate, the
indices x, y, z correspond to the projections of the
angular velocity on the axis of the Oxyz navigation
coordinate system; ,, are zero signals; k, are
transfer constants; A¢ is the temperature increment;
k, are temperature coefficients.

The block diagram of the neural network
corresponding to the mathematical model of the
measuring inertial unit (1) is shown in Fig. 1.

The neural network shown in Fig. 1 consists of

three layers, including input, hidden and output ones.

The data for the input layer of the neural network are
the temperature and readings of the inertial
measurement unit. The internal hidden layer
implements the information processing procedure of

individual triaxial inertial measurement units. The
outer output layer determines the resulting
projections of the measured angular velocity vector
of the moving object on the axis of the orthogonal
navigation coordinate system.
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Fig. 1. Block diagram of the neural network of the triaxial
inertial measuring unit

The structure of a neural network for processing
information from an excessive non-orthogonal
measuring instrument based on MEMS inertial
sensors is presented in Fig. 2 [10].

Fig. 2. The neural network of non-orthogonal measuring
instrument

Usually, inertial measurement units based on
MEMS gyroscopes have a built-in thermal
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stabilization system. Therefore, the temperature drift
can be reduced to a minimum value, and the
connections of the neural network that determine the
temperature dependence can be omitted for
simplicity. The process of learning a neural network
for processing the information of a- redundant non-
orthogonal measuring instrument based on three-axis
MEMS sensors for the z-axis of the navigation
coordinate system is presented in Fig. 3.
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Fig. 3. Learning of a neural network during the
determination of projections angular velocity on z axis

In Figure 3, the following notations are used: Ref
is the reference signal at the output of the neural
network; Out is the output signal that changes during
the learning process; Err represents the error of the
output signal.

A graphic representation of the change in the
connection coefficients of the neural network during
its learning is presented in Fig. 4. The application of
the proposed information processing method ensures
the choice of the best three-axis MEMS sensors from
the point of view of achieving minimum root mean
square errors. As a result of the application of the
developed information processing method based on a
neural network, inertial sensors were chosen, which
ensure the maximum accuracy of determining the
projections of the angular velocity of a moving object
on the axis of the navigation coordinate system.
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Fig. 4. Determination of angular velocity projections on
the axis of the navigation coordinate system

The use of the developed information processing
algorithm significantly speeds up the process of
determining the angular velocity of a moving object.
It should be noted that the standard information
processing procedure requires complex calculations
caused by the need to take into account the matrix of
transformations between the measurement and
navigation coordinate systems. The coefficients of
the measurement equation in most applications are
determined by linear dependencies (1) and can be
determined using the method of least squares.
However, the application of the least squares method
requires significant computing resources, including
the RAM capacity for storing reference values and
intermediate calculation results, and execution time.
Neural networks do not have such disadvantages and
can be implemented based on a microcontroller with
limited resources.

III. THE METHOD OF SEARCHING FAILURES BASED
ON NEURAL NETWORKS

Consider a neural network, taking into account
the fact that a set of n inertial sensors is combined in
an excessive non-orthogonal configuration. For
certainty, let's focus on an inertial device designed to
measure the angular velocity of a moving object.

The structural diagram of such a neural network
is presented in Fig. 5 [11].

The measurement error for each inertial sensor
can be defined as

A=0,-Q, @)

where A; is the measuring error; €); is the projection
of the angular rate; Q2 is the reference value.

The condition for making a decision about a
choice of the measuring channel looks like

|A|<e. 3)

The expression (2) can be described in the
following way

A, =9, —h(i,Do, —h(i,2)o, —hi,3)o,. @)

To simplify the calculation procedure, condition
(3) can be divided into two linear functions

A, <eand A, >-g or e=A,; >0 and e+ A, >0.(5)

The function of the first layer of the neural
network is to estimate the deviation of the
measurement results from the probably measured
values. At the same time, this layer of the neural
network performs normalization of measurement
estimates using the sigma function.
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Sensor
array

The second level of the neural network, shown in
Fig. 6, implements the logical AND function. In this
way, it is possible to determine the error of the
measuring channel, which does not exceed the
permissible limits. At the same time, it allows you to
define a weighting function for a given measuring
axis.
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Fig. 6. Graphical representation of the transfer function
of the second level of the neural network that implements
the function of logical AND

The effectiveness of the proposed approach to
fault finding on the basis of expressions (4), (5) is
proven by the simulation results presented in Fig. 7.

The input signals entering the three-axis inertial
measurement sensors are normalized sinusoids
Fig. 7(a, b, c). Additive random noise with an
amplitude of 0.075 (normalized value) is added to
the sensor outputs. In the scenario, the third sensor
of the excessive meter fails for a short time. In the
first layer of the neural network, the deviation of the
sensor readings from the weighted average value
was determined (Fig. 7d, e). With the help of the
second layer of the neural network, a logical signal
of the sensor's weight coefficient was formed.

(Fig. 7f). The conversion matrix is formed by the
matrix of weighting coefficients of three sensors. In
the future, this matrix is used to form the output
signal. In the absence of correction of the weighting
coefficients, the output signal of the meter (Fig. 7g),
formed by averaging the output signals of individual
sensors, will be distorted, as shown in Fig. 7h. Such
a measuring system with a neural network
implements the functions of the quorum element.
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Fig. 7. Results of simulation
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IV. THE METHOD OF WIDENING DYNAMIC RANGE

As mentioned earlier, measuring the angular
velocities of a moving object requires the use of two
coordinate  systems, and the inertial and
measurement coordinate systems. Projections of the
angular velocities of a moving object are measured
relative to the inertial coordinate system. The axes of
the measuring coordinate system coincide with the
axes of the sensor's sensitivity. The relative
arrangement of two biaxial MEMS sensors is shown
in Fig. 8. In this figure, the axes of the inertial
coordinate system (Ox;y;z;) coincide with the
measurement axes of the first MEMS sensor. The
scheme presented in Fig. 8, provides measurement in
the horizontal plane.
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Fig. 8. Increasing range of measurements due to mutual
location of two MEMS inertial sensors

It should be noted that solving this problem is of
great importance for controlling the movement of
various types of objects.

There are various methods of increasing the
accuracy of non-orthogonal measuring devices, for
example, calibration taking into account the
influence of magnetic course deviations [12], [13].
But this article proposes to increase the range of
measurements in a non-orthogonal configuration
using information processing algorithms. The
advantage of this approach is that it does not require
additional testing.

The operation of the redundant inertial measuring
instrument can be described by a vector equation [1],
[14]

Q=Ho, %)

T .
where Q=[0, ®, ®, o,] is the vector of
projections of angular rate onto measuring axes
m:[mx (oy].

To restore the vector of input signals, it is
necessary to use the inverse matrix

4
H = |diag{p,,...p,}H if > p =2,
i=l1

H if ipi<2,
i=1

b= 1
b= 0
Since the matrix H is not square in the general

case, the Moore—Penrose algorithm must be used to
determine the pseudo-inverse matrix

H'=(H'H)'H". (7)

lf xmin <| l)z |S xmax’ 6)
otherwise.

Based on (5) and (7), it is possible to write down
the algorithm for determining the input vector of
measurements

o=HQ. (8)

To estimate the accuracy of restoring the input
vector, it is possible using the error correlation
matrix

D=H"H)". )

Modeling was carried out using expressions (6),
(8) and (9). Figure 9 presents information on angular
velocities measured by two MEMS sensors,
including all measurement axes of the navigation
coordinate system [15], [16]. Analysis of simulation
results shows that direct use of formula (6) leads to
sufficient distortion of measurement results. This
situation is caused by the phenomenon of saturation.
To compensate for this phenomenon, it is necessary
to exclude from the calculations all measurements
that belong to the saturation region.
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Fig. 9.Results of modelling for the increased measuring
range with the additive noise
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V. CONCLUSIONS

A neural network based on learning samples is
considered. Such an approach reduces the calibration
time, including the preparation of learning samples,
in comparison with the algorithm based on the least
squares method. The learning process of the neural
network is shown. The simulation results proved the
efficiency of the proposed method are represented.

An improved algorithm based on a neural
network is proposed, which provides a current
analysis of the accuracy of the measuring channels
and a generalized assessment of the performance of
the inertial redundant measuring instrument. The
algorithm ensures searching failures in the device.

The possibility of increasing the dynamic range
of the redundant measuring instrument due to the
non-orthogonal configuration has been studied. The
simulation results have been showed that the
proposed structure of the inertial measuring unit and
the information processing algorithm make it
possible to increase the measurement range by 1.44
times with the same reduction of errors for
measuring parameters in the given range.
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B. O. Tominmn, O. A. Cymenko. Metoaun o0poOnenHsa indopMmanii BuMipoBaya 3 HEOPTOrOHAJLHHUM
pO3TalIyBaHHAM iHepUiaJbLHUX JATYUKIB

VY crarti po3IJSIHYTO BIOCKOHAJIEHHS METO/AIB OOpOOKH JaHMX y BHUMIpPIOBAJbHUX INPHJIagaX 3 HEOPTOTOHAIBHOIO
opieHTali€0 iHepuianbHUX JarT4ukiB. [lpencraBieHo Meron o00poOKM BuMiproBasbHOI iH(opMamii Ha OCHOBI
HEWPOHHUX MepeX. 3almpOoNOHOBAaHO METO IOMIYKY BiIMOB OKPEMHX JAaT4MKIB Yy HaJMIpHOMY HEOPTOrOHAJIHHOMY
BUMIpIOBaYy Ha OCHOBI HEWpOHHUX Mepek. ONucaHo MEeTOA PO3LIMPEHHS AWMHAMIYHOrO Jdiana3oHy HaJMipHOTO
HEOPTOTOHAJIBHOI'O BUMipIoBaua. IIpeacraBineHo BiAMOBigHI OOYMCHIOBANBHI mpoueaypd. Onuc NpeacTaBIeHUX
METOJIIB CYINPOBO/IKYETHCS TIOIAHHSAM PE3YJbTATIB MOJICIIOBAHHs. 3alpOIIOHOBAHUM MiJXia 3a0e3rnevye ImiJBUIICHHS
TOYHOCTI Ta HaAIMHOCTI BUMiptoBaHb. OTpUMaHi METOIUKH MOXYTh OyTH OCOOJMBO KOPUCHUMH IJISI NIPOEKTYBAHHS
3ac001B BUMIPIOBAIFHOT TEXHIKH, MPU3HAYEHUX JIISI BUKOPUCTAHHS B OE3MIIOTHHX JIITAJIBHUX arapaTax.

Karw4oBi ciioBa: HEOPTOroHaNbHHI BHMIpIOBaY; IHEpLIiaJbHUN JAaTYMK; HEHpOHHA Mepeka; IOUIYK BiJMOB;
IUHAMIYHUN ialla30H.
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B. A. Tomunsia, A. A. Cymenko. Metoabsl 00padoTkn HMH(OPMALMM H3MEPHUTE]Is] ¢ HEOPTOrOHAJTBHBIM
pacnoiokeHneM HHePUHATbHBIX JaTYNKOB

B cratbe paccMOTpEHO YCOBEPIIEHCTBOBAHWE METONOB OOpaOOTKM JaHHBIX B M3MEPUTENBHBIX NpPHOOpax ¢
HEOPTOTOHAJIBHOW OpHEHTAllMell WHEepPUUAIbHBIX JaTdukoB. IIpeacraBieH Merox 0OpabOTKH H3MEpPUTENBbHON
nHpopManuy Ha OCHOBE HEHPOHHBIX ceTed. [IpemonkeH MeTo MOUCKa OTKa30B OT/AENBHBIX JaTYUKOB B YpE3MEPHOM
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M30BITOYHOTO HEOPTOrOHAIBLHOTO U3MepHTens. [IpencTaBieHbl COOTBETCTBYIOIIME BBIYHCIUTENBHBIC IPOLEAYPHI.
OnucaHue NPEACTaBICHHBIX  METOAOB  CONPOBOXKAAETCS  MNPEACTABICHWEM  Pe3ylbTaTOB  MOAEIMPOBAHUS.
[pennaraemeiii mojaxon oOecHeYMBAeT MOBBINIEHHE TOYHOCTH M HAAEKHOCTH H3MepeHHi. [loiayueHHbIE METOAMKH
MOT'YT OBITh OCOOEHHO MOJIE3HBI JJISl TPOEKTUPOBAHUS CPEACTB U3MEPEHHM, PeJHa3HAYEHHBIX Ul MCIIONb30BaHUS B
OECIMIIOTHBIX JIETATENbHBIX amlnaparax.
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