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Abstract—The paper deals with studying the process of planning trajectories during the quadrotor flight.
The typical trajectories of the drone flights have been analyzed. Block diagram of the control system in
the nonholonomic case and the horizontal flight is given. Comparative analysis of the most widespread
trajectories is represented. The possibility to use two types of Dubins trajectory is analysed. Introducing
polar coordinates for forming flight trajectories is proposed. The grounded choice of the quadrotor
trajectories for different cases of the holonomic and nonholonomic closed-loop control systems was
proposed. The advantages and disadvantages of the trajectories planning in each of these cases were
analyzed. The Simulink models for generators of the quadrotor trajectories have been developed. The
simulation results of generations of these trajectories have been represented. The possibilities of
MATLAB for simulating flight trajectories are shown. The obtained results can be applied for unmanned

aerial vehicles of different types.

Index Terms—Dubins trajectories; horizontal flight; Simulink-models; quadrotor; holonomic systems;

nonholonomic systems; unmanned aerial vehicles.
I.  INTRODUCTION

Nowadays, unmanned aerial vehicles (UAVs) or
drones are widespread in many areas of human
activity including civil and military applications.
Drones have an advantage in comparison with
manned vehicles during applications in difficult for
human conditions. The improvement and
development of new types of UAVs including their
guidance, navigation, and control systems are
confirmed by the active interest of the world
community in this issue. In particular, international
scientific conferences on this topic are regularly held
in many countries of the world.

Unmanned aerial vehicles are characterized by
low cost and ease of operation, which leads to broad
perspectives for their use for remote sensing,
mapping, monitoring, and other applications. It
should be noted that quadrotors are of great interest
in some areas of application.

During tests and operations of drones in general
and quadrotors in particular, it is necessary to
provide the flight by the given trajectory. To solve
this problem, it is necessary to consider such tasks as
route planning before the flight and during the flight,
trajectory flight control, and navigation. The
difficult conditions of quadrotor operation and
features of their application require solving the

problems of ensuring high accuracy of trajectory
control and stabilization during stochastic and
deterministic perturbations.

All the flight missions of the quadrotors can be
divided into indoor and outdoor applications. It
should be noted that the problem of planning
trajectory for indoor applications is sufficiently
simplified. This situation is explained by the closed
flight space that imposes restrictions on the position
and speed of a quadrotor. Hence, the quantity of
possible trajectories is bounded. Therefore, we will
pay the main attention to outdoor applications,
which are numerous and varied.

The surveys [1], [2] outline the following most
popular civil applications for quadrotors: real-time
monitoring, providing wireless coverage, remote
sensing, search and rescue, delivery of goods, aerial
photography of large areas, security and surveillance,
precision agriculture, and civil infrastructure
inspection. Paper [2] concentrates more on specific
applications where the use of drones in swarms may
bring additional benefits in comparison to their single
use. In addition, it is useful to mention the quadrotors
usage to enhance the performance of communication
as outlined in tutorial [3].

The goal of the research is the grounded choice
of trajectories for quadrotors depending on flight
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missions, description of ways to give trajectories,
and simulation of planning trajectories in Simulink.
The last item is a very important part of the Model-
in-Loop Simulation (MILS), which is the necessary
stage of the Computer-Aided Design (CAD) of the
quadrotor [4].

II. PLANNING TRAJECTORIES OF QUADROTORS

In order to provide all aforementioned flight
missions with necessarily planned reference
trajectories, it is convenient to choose Dubins
trajectories [5], [6], [16] for flight mission
implementation. They are universal for the variety of
flight missions, and segments of straight lines and
arcs of circles define them. It can be explained, that
for moving vehicles with constant speed V, optimal
in time trajectory between two points of the route
consists of the aforementioned elements [5]. Such a
configuration ensures an optimal transition from one
point of planned trajectory to another. Applications
of Dubins trajectories have some restrictions such as
the necessity to ensure the constant height and speed
of the quadrotor flight. The certain disadvantage of
Dubins trajectories is some discontinuity at the
points of conjugation of two straight lines of the
linear piecewise trajectory, which is the typical
situation in the waypoint navigation.

It should be noted that all the drones could be
divided into the holonomic and nonholonomic
systems. For example, a UAV with fixed wings is a
nonholonomic system. On contrary, quadrotors can
be used as both nonholonomic and holonomic
systems. It depends on the type of feedback in the
flight control system [7] — [11], [14], [16]. The basic

trajectories of nonholonomic and holonomic systems
is as follows. Planning a trajectory for a holonomic
system is carried out by the positions of the
quadrotor in the space and the time marker
corresponding to this position. That is why these
trajectories are called double-index trajectories [8],
[9]. Planning a trajectory for a nonholonomic system
is implemented by components of the vector of the
spatial speed in some inertial reference frame. For
planning trajectories of nonholonomic systems, it is
sufficient to give the sequence of intermediate
waypoints (WP) in space only. In this case, the
piece-linear trajectory is defined by the WP set.
While the circular trajectory is defined by the center
of the circle, the radius of the circle, and points of
input in the circle at output from it. That is why
these trajectories are called one-index (or space-
index) trajectories [8], [12], [14], and [15]. Block-
diagram of the system for planning the trajectory of
the quadrotor as the nonholonomic system in the
horizontal plane is represented in Fig. 1, where the
reference trajectory unit (RTU) determines signals
for planning the trajectory by the speed command V
and heading command y for the guidance system
(GS) and the heading control system ‘“y-con”
respectively [10], [11]. The guidance system
determines an error between the given trajectory and
the real position of the quadrotor. It also produces
reference signals X,, Y. for the position in the outer
contours and V,, V, for speed control in the inner
contours, driving the systems of the longitudinal
motion control X-con and the lateral motion control
Y-con. Signals X,, Y, denote the actual position of
the quadrotor in the horizontal plane.

difference between approaches to planning
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Fig. 1. Block diagram of the control system in the nonholonomic case and the horizontal flight: GS is the guidance
system; RTU is the reference trajectory unit

Block diagram of the system for planning
trajectory of the quadrotor as the holonomic system
is given in Fig. 2. In this Figure, the blocks “X-con”
and “Y-con” are the closed-loop systems for the
quadrotor position control on axes “X” and “Y”
respectively. “Reference trajectory unit” is the
generator of the reference track, which produces

reference commands “X.f" and “Y.s for these

closed-loop systems in accordance with the
sequence of waypoints WP,(X,, Y)).

The position control is preferable for indoor
applications, and then the quadrotor is considered as
a holonomic system. In this case, such property is
the essential advantage of the holonomic systems,
because it is possible to achieve better accuracy of
the quadrotor positioning. The last circumstance is
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very important for short-distance flights with
obstacles. However, for the quadrotor motion in a
holonomic case, the position-based path following
requires the trajectory, defined by not only space
indices, but time indices as well, requiring in this
case the two-index (space and time) trajectory
planning. Therefore, in the case of outdoor usage of
the quadrotor, when a customer can frequently
change the flight missions (routes, velocities, etc.)
one-index path planning is more preferable due to its
simplicity. Finally, we can make the conclusion that
in cases of the great number of flight missions, it is
convenient to apply quadrotors as nonholonomic
systems because planning trajectory by WP only is
simpler in this case. Therefore, the customer has a
choice to apply the quadrotor as a holonomic system
at the cost of the more complicated trajectory

planning or to use the same drone as a
nonholonomic system with simpler trajectory
planning.

Figure 3 illustrates processes of planning the
piece-linear and circular trajectory for nonholonomic
and holonomic systems. It should be noted that only
four points (Xo, Yo), (X1, Y1), (X2, 12), (X;, ¥3) must
be given for planning piece-linear trajectory for a
nonholonomic system. The necessary information
for planning trajectory in the case of the holonomic
system looks like (Xoo, Yo0), foo; (X1, Y11), 1115 (X2a,
Y1), tn; (Xa3, Y33), ts3. For planning the circular

(XY,

X, Y,)

(X Yk g

trajectory of a nonholonomic system, it is necessary
to give coordinates (X,, Yo), (X1, Y1), R. The
necessary information for the circular trajectory for
the holonomic system is (X, Yo), fo; (X1, Y1), t1; (X;,
Yo, ti; (Xn, Yv), Iy
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Fig. 2. Block diagram of planning trajectory in the case
of the holonomic system

Figure 3 demonstrates that in the holonomic case,
we have to define piece-linear and circular
trajectories by means of both given time and space
coordinates. The disadvantage of this approach is the
changed speed of motion because motion can
accelerate and become slow. To ensure smooth
motion along the given trajectory, it is expedient to
design a special dynamic system, which generates
continuously moving WP in the space (one can
choose the speed of the WP motion depending on
characteristics of the given quadrotor [9]).

Fp Yty (e Yyl ty

(X, Yohit,

(X Yy hity

Fig. 3. Planning trajectory: (a) is the piece-linear trajectory for the nonholonomic system; (b) is the circular trajectory
for the nonholonomic system; (c) is the piece-linear trajectory for theholonomic system; (d) is the circular trajectory for
the holonomic system

III. SIMULATION OF TRAJECTORIES

Analysis of the known quadrotor applications for
practical cases shows, that for the time being the
usage of the holonomic systems prevails over the
nonholonomic ones [9], [15], although the amount of
the last cases is increasing [10] — [13], and [16].
That is why, in this item, we will describe the
dynamic systems for the generation of the given
reference trajectories with continuously moving WP
for holonomic systems. It is expedient to use for
models of such systems the Simulink package.

The Simulink model of the linear-piecewise
trajectory reference unit for the holonomic system is
represented in Fig. 4.

The block “Step” implements the setting of the
given speed. The consequent WP; (“X;”, “Y;”) along
with correspondent values of the headings “v, - are
stored in the special block. They are consequently
applied to the inputs “InPSI”, “InX”, “InY”. The
operator 1/s provides the dynamical properties of the
reference track generator.
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Fig. 4. Linear-piecewise reference trajectory generator

The simplest system for generating the circular
reference trajectory can be described by equations:

X(@)= jR cos(wt)dt, Y(¢)= jR sin(wt)dt. (1)

f fo

In the expressions (1) radius R and angular
velocity o define the linear velocity V' = @R, which
must be feasible for the given quadrotor.

The generalized approaches for generating
Dubins trajectories as functions of space and time
are given in [5], [17]. In article [17] such algorithms
are called “nonholonomic Dubins’ car”. It should be
noted that planning Dubins trajectory is
accompanied by difficulty caused by the necessity to
connect segments of straight lines and arcs of the
circle [5], [16], [17]. To avoid these difficulties, we
propose to generate in polar coordinates smooth
pseudo-Dubins trajectories. As examples, we used
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Fig. 5. Simulink-model for forming pseudo-Dubins

trajectory of the first type

two types of such trajectories calculated by

formulas:
] T
R()=1+ 0.1-s1n(4(0t—5j , (2)
for the 1™ case, and
. s 3 T
R(t)=1+0lsin (4mt + Ej + 0.5(s1n8(ot + 5) , (3)

for the 2™ case, and ¢ = (0...27) for both cases.

Figures 5 and 6 show the Simulink models,
which represent processes of generating Dubins
trajectories of the first (2) and second (3) types. One
can make sure that computational blocks for forming
Dubins trajectories of the first and second types
correspond to expressions (2), (3).

Figures 7 and 8 show the results of generating the
planned pseudo-Dubins trajectory in correspondence
to formulas (2), (3) in the Cartesian frame.

Changing the parameters in expressions (2), (3),
such as the constant terms and the amplitudes, we
can widen or narrow these closed-loop reference
tracks. Simulation results, represented in Figures 7
and 8, prove the efficiency of the proposed approach
because these tracks are very similar to the
combination of the linear piecewise and circular
trajectories. At the same time, their generation does
not require complications connected with the
conjugation of the linear and circular segments.
Note, that one can generate these trajectories in
MATLARB also.
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Fig. 6. Simulink-model for forming pseudo-Dubins
trajectory of the second type
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Fig. 7. Forming pseudo-Dubins trajectories of the first type: (a) x-coordinate in time; (b) y-coordinate in time; (c)
resulting trajectory in horizontal plane
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Fig. 8 Forming pseudo-Dubins trajectories of the second type: (a) x-coordinate in time; (b) y-coordinate in time;
(¢) resulting trajectory in horizontal plane

IV. CONCLUSIONS

The trajectory planning for the quadrotor strongly
depends on its control system, which can give the
closed-loop system properties of the holonomic or
the nonholonomic systems.

For the holonomic case, trajectory planning is
more complex because it requires double indexing in
both time and space. However, the trajectory control
system, in this case, is simpler because it contains
one positional control loop only [9]. In addition, the
holonomic control system uses directly the position
of the centre of a mass of the drone on a given
trajectory as the main feedback. Therefore, the
tracking of the trajectory is more accurate in
comparison with a nonholonomic system

For the non-holonomic case, trajectory planning
is much simpler because it requires the use of space
indices only. At the same time, the trajectory control
system is more complicated because it consists of
two loops: internal for velocity control and external
for correction of the direction of the current velocity
vector respectively the given reference trajectory.

The generally accepted and the most convenient
type of reference trajectory is the Dubins trajectory
consisting of the straight lines segments and the arcs
of circles. For the nonholonomic systems, it is quite
enough to define the waypoints in the space only for

the linear-piecewise trajectory and the position of
the circle, its radius, and the input-output points.

Meanwhile, for the holonomic system, it is
possible to wuse the special dynamic system,
generating  the  continuous  temporal-spatial
trajectory. In the paper, such generators of Dubins-
type trajectories are considered. However, there are
some difficulties for conjugation of the line
segments and the circle arcs in one dynamic system.

To avoid these difficulties, we propose to use the
pseudo-Dubins trajectories generators, which create
the smooth trajectories in the polar frame.
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VY cTatTi JOCHiKYEThCA TpOIieC IUIaHYBaHHS TPAEKTOPIH IiJ Yac MOJbOTY KBaJpoKomnTepa. [IpoaHai3oBaHO THITOBI
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TOPU30HTAJILHOTO MONBOTY. [IpencTaBineHo MopiBHUTBHUN aHaili3 HAaHOUTBII MOMIMPEHUX TpaekTopii. [IpoananxizoBaHO
MOXIIUBICTh BUKOPUCTAHHS JIBOX THIIB Tpaekropii JlyOiHca. 3anmponoOHOBaHO BBEIEHHS MONSIPHUX KOOPIWHAT IS
(opMyBaHHsS TPAaEKTOPii MOJBOTY. 3alPOIIOHOBAHO OOIPYHTOBaHHMI BHOIp TpaeKTOpid KBaJpoKoNTepa IS Pi3HUX
BUIIAJKIB TOJIOHOMHOI Ta HETOJIOHOMHOI 3aMKHYTHX CHUCTEM KepyBaHHs. [IpoaHanizoBaHO mepeBaru Ta HEAONIKH
IUIAaHYBaHHSl TPAEKTOPIH y KOXHOMY 3 IWMX BHmaikiB. PozpobneHo Simulink-moneni anst reHepatopiB TpaekTopii
KBajapokonTepa. HaBemeHO pe3yibTaTH MOJCTIOBAHHS MPOIECY TeHepalii Iux TpaekTopiil. Iloka3aHO MOMIJIUBOCTI
MATLAB anst MozenmtoBaHHSI Tpa€KTOPii monboty. OTprMaHi pe3ynbTaTd MOXKYTh OYTH 3aCTOCOBaHI JUIsl O€3ITIIIOTHHX
JITaNbHUX anapaTiB Pi3HUX THIIIB.
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CraThsl MOCBSIIEHA H3YYEHHIO Tpollecca IUIAaHUPOBAHMSA TpaeKTopui monera kBaapokonTepa. IIpoaHammsupoBaHbI
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