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Abstract—Mathematical modeling of processes occurring in living organism is convenient and reliable
tool for the understanding of mechanisms of human organism self-organization, interaction and inter-
influence of its functional systems. The simulations of processes occurring in organism during various
extreme perturbations at mathematical models allow us to study the parameters of self-organization in
these perturbations at the level unavailable currently for modern invasive methods as well as to predict
the organism steady state at given level of perturbing effects. The objects of study were the reactions of
respiratory and blood circulatory systems, because these systems, according to the theory of adaptation
by F. Meerson, are the most sensitive to the disturbing effects of environment. The paper provides a brief
overview of mathematical models of respiratory and blood circulatory system; in the construction of these
models rather complex mathematical apparatus was used and, accordingly, the implementation of which
requires significant computational resources. The mathematical model of the functional respiratory
system was proposed; it is based on the principle of the main function of respiratory system realization
and takes into account conflict situations that occur in organism during this function fulfillment. This
conflict happens between the governing and executive self-regulatory organism organs as well as
between the different tissues groups in their fight for the oxygen. Mathematically, the model is a system of
ordinary nonlinear differential equations that describe the transport and mass transfer of respiratory
gases in all structural parts of respiratory system. The task of control of gases dynamics in organism was
solved using the principle of Pontryagin maximum.

Index Terms—Functional respiratory system; controlled dynamic system; self-organization of

respiratory system; operators of continuous interaction system; disturbing influence of environment.

I.  INTRODUCTION

Mathematical and simulation models are widely
used nowadays for the investigation of patterns of
physiological processes. The advantage of their use
to gain new knowledge is the ability to obtain
information at the level inaccessible to modern
invasive methods. This direction is based primarily
on the works of P. K. Anokhin, whose main ideas
were the theory of functional systems and the
application of systems approach to the study of
physiological functions.

In articles[1], [2], a coherent theory of organism
adaptation was presented, in which the respiratory
and blood circulatory system were distinguished
among other functional systems, as ones that the

most noticeably reacted to changes in human living
conditions. It was shown too [3] that if human
organism was presented as a chain with "weak link"
(in terms of the theory of reliability), then such
"weak link" will be the respiratory and blood
circulatory systems.

Mathematical modeling is an effective tool that
allows us to simulate extreme disturbances
influences on the human organism and to predict its
reactions to disturbances of the internal and external
environment, while modern diagnostic methods
characterize only the current state of organism. It
should be noted that there are a large number of
works related to the mathematical modeling of
certain subsystems of organism and organism as a
whole [5]. Among the models of respiratory system,
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the model of F. Grodins [6] become a real
breakthrough in which the respiratory system is
considered as a dynamic system, i.e. it makes it
possible to use the appropriate mathematical
apparatus.

II. PROBLEM STATEMENT

There are a large number of models of respiratory
and blood circulatory systems, which use rather
complex mathematical apparatus. Without touching
"black box" models, which also have the right to
exist because they allow to identify causal
relationships and significant dependencies at the
population level, but do not allow to analyze the
processes occurring within the system, we will pay
more attention to structural models, which are
developed on the basis of laws and hypotheses on
the structuring and functioning of biosystem.

Mathematical models of the respiratory system
differ between themselves depending on the purpose
of the study. The models of respiratory mechanics, in
which the lungs are represented by elastic shells
connected to the atmosphere by a tube with some
hydraulic resistance [5], which allow to obtain the
simplest relationships between physical parameters
that characterize lung functions, but do not take into
account the spatial heterogeneity of respiration in the
human lung are widespread. [6] provides a brief
overview of human lung models that vary in
complexity, from the simplest, which are presented
as a rigid container combined with the atmosphere, to
a model in which volume and pressure change under
the influence of muscle work, taking into account gas
exchange with blood and blood perfusion. In article
[7] the two-chamber model of lungs which consists
of alveolar space through which the blood perfusion
is carried out and the anatomic dead space is
presented. This model is used to estimate the minute
volume of blood circulation.

In article [8], a one-dimensional model of air
transfer from the trachea to the alveoli is considered,
taking into account the respiratory gases exchange
with blood and blood perfusion. The paper assumes
the correct dichotomy of airways and laminar
airflows; it explains the reasons for the existence of
exactly 23 generations of airways, although the
Weibel model by itself was proposed much earlier
[9]. Although we have to note that the assumption
about the laminar style of flow in the airways was
substantiated by domestic scientists on mathematical
model [10] much earlier. Other authors came to the
similar results too [11].

With the intensive progress of computational
methods of gas dynamics and the means of their
implementation the three-dimensional models of air

flow began to develop, the air by itself is considered
as multicomponent mixture of gases. An overview
of these models is given in [12]. The same paper
proposes a mathematical model of human
respiratory system, which consist on three related
sub-models that describe the respiratory process as a
set of synchronized processes of gas dynamics in the
bronchial system, gas movement in a deformable
saturated sparse medium and diffusion. This model
is positioned by the authors as sub-model of
multilevel model of the whole human organism.

As for the mathematical models of blood
circulatory system, there are also a large number of
developments related to this topic. This is primarily
due to the fact that the study of physiological and
pathophysiological processes in the cardiovascular
system is a topical issue in many modern studies
[13]. Over the last thirty years, several key
approaches have been developed to describe local
and systemic processes related to blood flow, which
have varying degrees of spatial detail, depending on
the applied problem to be solved. Usually a
mathematical apparatus is used, which includes
algebraic and differential equations [14]. Averaged
models of this type are not demanding on computing
resources and contain a small number of parameters
that are easily determined for a particular organism,
but, unfortunately, reflect only the general
physiological patterns [13].

More complex models require the use of more
complex mathematical apparatus. Thus, a detailed
description of blood flow in large vessels is carried
out using the Navier—Stokes equation in two or three
dimensional approximation [15]. This approach uses
methods for solving nonlinear equations in partial
derivatives in three-dimensional domains of
complex shape [16], [17]. In this case, there is a
problem  of  constructing  three-dimensional
geometry, which corresponds to the shape of the
vessel or vascular bed. The use of two-dimensional
or three-dimensional models also requires the setting
of boundary conditions at the boundaries through
which the blood flows, setting the rheological
properties of blood, taking into account the mobility
of the vascular wall, elastic properties of the wall,
pressure of surrounding tissues, and etc. [13]. All
this makes the use of such models quite inefficient;
in addition, it requires the use of significant amount
of computing resources. Although there is a suitable
area for the application of such models: three-
dimensional analysis of blood circulation parameters
in the aorta [18], in the main cerebral vessels [19], in
the aneurysm [20].

Summarizing all the above, it can be argued that
the proposed models require the use of rather
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laborious mathematical apparatus and significant
computing resources. In addition, they are not
always justified from a mathematical point of view,
based on a number of significant limitations. The
questions of checking of adequacy of such models
are present as well. Therefore, the scope of their
application seems to be quite limited, there are some
difficulties in the practical application of such
models associated with input data obtaining. In
addition, such models (at least some of them) are the
parts of more complex formations, but it is not clear
how they take into account the interaction and inter-
influence with other functional systems of organism.

At the same time, there is a specific demand for
mathematical models that could investigate the
processes occurring in human organism at the level
of predicting organism steady state in disturbances
of various etiologies, the input data for which would
be experimental data available for obtaining.

The purpose of the work was to develop
mathematical model of the functional respiratory
system to study its current state and to predict the
parameters of self-organization of the human
organism at a given level of disturbing effects.

III. PROBLEM SOLUTION

A. Model description

The main function of the respiratory system is the
adequate delivery of oxygen in time to the tissues of
the working organs and removal of carbon dioxide.
The partial variables used for the estimation of the
state of functional respiratory system are the partial
pressures of respiratory gases in the airways and
alveolar space and the tensions of respiratory gases
in arterial and mixed venous blood and blood of
tissues capillaries. Depending on the purpose of
modeling, the apparatus of the theory of differential
equations  with  concentrated or distributed
parameters are used usually for the estimation of the
functional state of respiratory and blood circulatory
system [21], [22]. The dynamics of partial pressures
and tensions of respiratory gases are described by a
system of ordinary differential equations. The
principle of material balance and continuity of flow
was used for their construction.

Structurally, the respiratory system consists on
the upper respiratory tracts; the alveolar space from
which respiratory gases with the blood of the
pulmonary capillaries enter the arteries; the arterial
channels with which the gases are transferred to the
tissues where the metabolism takes place (with

consumption of oxygen, energy release for the vital
functions, as well as release of carbon dioxide and
water). Oxygen-depleted and saturated with carbon
dioxide blood in venous channels returns to the
alveolar space, where gas exchange takes place
again and it is saturated with oxygen and gives off
carbon dioxide.

Let suppose that p,, O,, p,, CO, — partial
pressures of oxygen and carbon dioxide in
respiratory tracts, p,0O,, p,CO, — in the alveolar

space, p,O,,p, CO, is the tension of respiratory
gases in the arterial blood, p, O,, p. CO, — mixed
venous blood, p,. O,,p,CO, — in pulmonary
capillary blood, p., o,, P, CO, - in tissue
capillaries, p, O,, p, CO, —in tissue fluid.

In general, the equation of the model can be
written as follows:

dp.O ;
%z(p(pi02’pico2’ni’V’Q’Ql‘f’fo 0,4, 02)’
(1)
dp, CO, ;
—_ <z — O 5 CO s 1]y V: s 2240
- v(7,0,,p,CO, M, 7, 0.0, 2

Gt,. CO2, Qt,. Coz )7

where the functions ¢ and y are described in detail
in [21] — [24]; V is the ventilation; m, is the degree
of saturation of hemoglobin by oxygen; Q is the
volumetric rate of systemic and (), local blood
circulation ¢, O, is the rate of oxygen consumption
by ith tissue reservoir; g, CO, is the rate of carbon
dioxide release in ith tissue reservoir. The rate
G, O, of flow of oxygen from the blood into the
tissue and G, CO, carbon dioxide from the tissue
into the blood is determined by the ratio:

G,=D,S, (p.,~p,) )

where D, are the permeability coefficients of gases

through the air-hematic barrier, S, is the surface

&
area of gas exchange.

Here is the equation that characterizes the
changes in the tensions of respiratory gases in the
blood tissue capillaries and tissue fluid of organ:
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where o,,a,,q, ,0, are coefficients of solubility

of respiratory gases in blood and tissue fluid; O, is

the volumetric velocity of blood circulation in the
Vt,. is
the volume of blood and tissue fluid, respectively.

The participation of biochemical structures —
hemoglobin, myoglobin and buffer bases in the
processes of mass transfer of gases add significant
nonlinearity into the system of differential equations.
Naturally, this makes serious difficulties for the
mathematical analysis of the dynamic system, but is
a very powerful mechanism for maintaining of
organism gas homeostasis, and from the standpoint
of control theory — the control mechanism.

Using the above model, the local and systemic
blood circulations during exercise and hypoxic
hypoxia were calculated. The calculated data differed
from those obtained experimentally, and they did not
answer a number of theoretical and applied
questions, for example, they did not explain the
causes of tissue hypoxia during low-intensity muscle

capillary bed of the tissue reservoir ¢,; V.

ct;

(00, (P, CO,=p,, CO,)+ v, - BH -Q, -Hb-Q, -z, - G, CO,

dn,,
dt )

work in hypoxic environment, when there are still
reserves for the growth of systemic circulation, the
role of the hypercapnic stimulus of regulation known
in physiology, at hypoxia of loading, hypoxic
hypoxia, and etc. That is why a more general model
of gas dynamics control in the organism was
proposed using Pontryagin maximum principle [25].
This model is based on the following principles.

The system which is modeled is considered as
self-organized. Respectively, the model was also
formulated as a model of self-organization of blood
circulation. Self-organization means the ability of
the model when the perturbation to change the
parameters of the system is so, that the effect of
perturbations was insignificant. At the same time,
certain quality criteria should be minimized. The
control in such systems should be carried out with
the resolution of arising conflict situations of various
nature.

Let’s formulate the problem of system control (1)
and (2) as follows:

o the initial state of the system is set by the
partial pressures and tensions of respiratory
gases in all parts of the system;

e area of change of control parameters is:

Vo <V<V,

max ?

Qmin < Q < Qmax’
Qt,. min < Qt,. < Qt,. max ?

>0,-0.

i=lm¢; “4)

e terminal set of the states due to the relations:

tho2—qqo2\s(eqo2, i=Lm,

L — ®)
G, CO,+¢, CO,|<¢, CO,, i=1m,

where ¢, O,, ¢ CO,, i=1m are rather small

positive values. The solution of the formulated
problem will be any set of values of the controlling

v, 0, 0,,i= Im from (4). Let's assume that the

optimal control parameters V, O, 0, . i=lLm

from (4), which provide a minimum of functional:
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;
I= min
0<V <V -
0<0,. <O "0 i

on the trajectories of the perturbed dynamic system,
p, and p, are coefficients of sensitivity of the

organism to lack of oxygen and carbon dioxide
excess. Coefficients A, are formed during evolution.

It is known that damage of the heart muscle,
brain tissues, liver, kidneys and some others leads to
the death, and perhaps this is why the density of
capillaries in them is quite high. In mathematical
modeling, the dependence is accepted

7\‘1, = ¢(ch, /Vt, )

The quadratic function ¢ characterizes the

degree of filling by the blood of unit volume of
tissue reservoir.

Let’s emphasize that the formulation of the
optimal control problem (1) — (6) is so that gas
homeostasis is understood as the relative constancy
of oxygen and carbon dioxide tensions, which is in
the compromise formation of disturbance-
appropriate levels of homeostasis in resolving
conflicts of both regional and systemic nature. The
Fick ratio can be used to calculate how much it is
necessary to increase the volume of blood
circulation through the working skeletal muscles in
order to maintain the oxygen tension in them at a
constant level. When comparing the calculated data
with the experimental ones, it is appeared that the
first ones exceed significantly the experimental
values. According to the proposed model, this is due
to ignoring the nature of the conflict that arises in
organism between the groups of working tissues and
the heart muscle, which provides the necessary
cardiac output. In fact, such situations occur every
time with the changes of organism's living
conditions. An increase in muscle work intensity
requires a corresponding increase in muscle
circulation (otherwise there will be oxygen
deficiency in the muscles) and can be achieved by
changing the systemic circulation or its
redistribution. In the first case, the intensity of the
heart muscle increases (oxygen deficiency appear in
it), in the second - a decrease in blood circulation in
the tissue reservoirs of other organs, which at a
constant rate of oxygen consumption leads to the
development of tissue hypoxia. Thus, changing the
conditions of the external or internal environment to
maintain gas homeostasis in one muscle group
requires an increase in blood circulation, which is
contrary to the interests of other tissues, because it

[P X2, (G,0.-4,0,) +p, 31, (G, CO, 44, €O, |dr,

i=1m, (6)

leads to oxygen deficiency. The solution to the
conflict is to find a compromise in which all tissues,
on average, sense the lack oxygen and their average
oxygen tensions decreases. In the model, this is
represented by the introduction of the dependence of
the rate of oxygen consumption by the heart muscle
on the volumetric rate of systemic circulation

In order to take into account the conflict of
situations between the executive organs of self-
regulation (respiratory muscles, heart muscle,
vascular smooth muscle), which are also consumers
of oxygen, and other tissues and organs, the
following ratios were introduced

qresp.m 02 = f(V), qcard.m 02 = (p(Q):
qsmooth. m 02 = \II(Q)

In this formulation of the problem of mass
transfer of gases process regulating, we can talk
about the optimal in relation to criterion (6) choice
of the volumetric velocity of blood circulation in
organism. The accepted form of setting of problem
of control is consistent with the conceptual models
that currently exist in modern respiratory
physiology. It is only important to make sure that the
set of solutions to the problem that is formulated is
not empty.

It should be noted that the model is used to study
the current state and to predict the parameters of
self-organization of the main functional systems of
organism for various perturbations, and as initial
data were used the data obtained by normal
physiological examination, namely — minute volume
of respiration, gas composition of alveolar and
exhaled air, frequency of respiration, minute blood
volume, data on blood acidity and hemoglobin,
parameters of the environment in which the
examination takes place, and etc. [26]. At the output
of the model we obtain the data on the hypoxic state
in all parts of respiratory system, which allows us to
make the conclusions about the nature of adaptation
of particular organism to perturbations. An example
of such applications were given in [27, 28] the tasks
for determining the optimal parameters of self-
organization of operators of continuous interaction
systems in conditions of increased situational stress
in decision-making. In particular, in [29] the
dependence of blood circulation in the brain of
operator of continuous interaction with increasing
intensity of professional activity was studied, in
[27], [28] the role of separate stimuli of respiratory
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regulation in decision makers under the stressed
situational circumstances was studied; the leading

role of hypercapnic regulatory stimulus was
demonstrated.
B.  Results of the simulation

An example of the application of the model are
the tasks described in [29], [30] to determine the
optimal parameters of self-organization of operators
of continuous interaction systems in conditions of
high situational stress in decision making. For
example, in [31] the dependence of blood circulation
in the brain of operator of continuous interaction
system was studied; i.e. with the increasing of
intensity of professional activity. A number of
computational experiments were carried out. Thus,
for the organism of average person, the conditions of
increased situational stress were simulated by
introducing an increased rate of oxygen
consumption by brain tissues. It was demonstrated
that maintaining of given level of pO, in brain

tissue with increasing of the rate of oxygen
consumption by the brain to 20% of the resting level
is possible without the connection of compensatory
reactions from the respiratory and circulatory
systems. An increase in the rate of oxygen
consumption in operator's brain by 30—70% requires
a corresponding linear increase in blood circulation
in brain tissues, further increase in oxygen demand
requires significant nonlinearity of blood circulation
growth in brain tissues. With the connection of the
compensatory response of the external respiratory
system, the growth of blood circulation in brain
tissues slows down, but the overall dependence does
not change. Even more interesting were the results
of the study of the role of individual stimuli of
respiratory regulation in decision makers in stressful
circumstances [29], [30]; the decisive role of
hypercapnic stimulus of respiratory regulation was
demonstrated (its contribution is 93%). The optimal
values of the control parameters obtained during the
simulation were in good agreement with the results
of experiments.

IV. CONCLUSIONS

The mathematical model of the functional
respiratory system for the investigation of the
current state and prediction of the parameters of self-
organization for operators of continuously
interacting systems in difficult situational decision-
making conditions were suggested in present article.
The general model consists on the models of
transport and mass exchange of respiratory gases
and self-regulation of respiratory and blood
circulatory systems. The executive mechanisms of

self-regulation were the respiratory muscles, heart
muscle and vascular smooth muscle. Respectively,
the parameters of self-regulation were alveolar
ventilation, systemic circulation and organ blood
circulations. The general description of the model
and fragment of the model for the area of blood
tissue capillaries were suggested. The examination
of conflict situations between the executive bodies
of self-regulation and the studying of rates
dependences for the oxygen consumption in these
organs were done.
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(pyHkuionanbHOI caMoopraHizanii opranizmy J0IMHA

MaremaTuuHe MOJICIIOBAHHS IIPOIIECIB, IO BiJOYBAIOTHCS B KMBOMY OpTraHi3Mi, € IPOCTHM 1 HaJiHUM iIHCTPYMEHTIB
JUIs TIi3HAHHS MeEXaHi3MiB CaMoOpraHizamii OpraHi3My JIIOJMHH, B3a€MOJii 1 B3a€MOBIUIMBY HOro ()YHKIIIOHAJIBHUX
cucreM. KpiMm Toro, imirtamis Ha MaTeMaTHYHOI MOJEJNI MpOLECiB, IO BiAOYBAIOTHCS B OpraHi3Mi IMpH Pi3HUX
eKCTPEMaJIbHUX BIUIMBAX, HAJIa€ MOMJIMBICTH JOCIIKYBAaTH MapaMeTpu CaMOOpraHi3allii Mpy IUX BIUIMBaX Ha TOMY
PiBHI, SIKMI1 y B JaHWH Yac € HEJOCTYITHUM JUIsi CyJacCHMX iHBa3sMBHUX METOMIB Ta IPOTHO3YBATH CTAlliOHAPHHUIA CTaH
OpraHi3My IpH 3aJaHOMY PiBHI 30ypIOBaJbHUX BILTHBIB. OO €KTOM MaHOTO AOCIIHKEHHS Oy oOpaHi (yHKI[IOHATBHI
CHUCTEMH JIUXaHHS 1 KpOBOOOITY TOMY, IIIO BiAMOBIMHO 10 Teopii amanrariii ®. MeepcoHa came Il CHCTEMH HAHOIIbII
TIOMITHO pearyoTh Ha 30ypIOroYi BIUTMBH 30BHIIIHBOTO CEpeAoBHINA. Y pOOOTI MpencTaBlieHa MaTeMaTuiHa MOJIENh
(YHKIIIOHAJIBHOI CUCTEMH JUXaHHS, IO IPYHTYETHCSI HA NPUHIMII 3/1iIHCHEHHST OCHOBHOI (DYHKIIT CHCTEMU JAWUXaHHS 1
BpaxoBy€e KOH(UIIKTHI CHTYyallii, [0 BUHHMKAIOTh B OpraHi3Mi NpH peanizamii wiei (QyHKOii: MK Kepylo4nMH i
BHUKOHABYMMH OpraHAMH CaMOpPETYILIi 1 MK yciMa opraHaMu Ta TKaHHMHaMH B OOpOTHOI 3a KHCEHb. 3alpolloHOBaHA
MaTeMaTu4Ha MOJIENb € CHCTEMOIO 3BHYAaHHMX HENiHIHHMX OudepeHIialbHUX PIBHSHbB, IO OMUCYIOTH TPAHCHOPT i
MacoOOMIH pPeCipaTOpHHX ra3iB y BCIX CTPYKTYPHHUX JIaHKaX CUCTEMH MUXaHHS. 3amava KepyBaHHS JIMHAMIKOIO ra3iB
PO3B’s13yBanacs i3 3aCTOCYBaHHSIM NMPUHIMIY MakcuMyMy [ToHTpsiriHa.
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MaremaTH4ecKoe MOJEIUPOBAHNE TPOIECCOB, MPOUCXOJISIINX B )KMBOM OPTaHU3ME, SIBJISETCS] MPOCTHIM U HAJAECKHBIM
WHCTPYMEHTOB JUIS T[IO3HAHUS MEXaHM3MOB CaMOOpPTaHW3allMd OpraHu3Ma 4YellOBeKa, B3aUMOJICHCTBHUS W
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OOBIKHOBCHHBIX HEIMHEHHBIX NUGGEpPEeHIINATbHBIX yYPaBHCHUHN, OIUCHIBAIONIMX TPAHCIIOPT M  MacCOOOMEH
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