
O.I. Chumachenko, S.V. Shymkov, A.T. Kot Two-Level System for Tuning Parameters of Artificial Neural Network 37

© National Aviation University, 2020
http://jrnl.nau.edu.ua/index.php/ESU, http://ecs.in.ua

UDC 004.032.26(045)
DOI:10.18372/1990-5548.63.14517

1O. I. Chumachenko,
2S. V. Shymkov,

3A. T. Kot

TWO-LEVEL SYSTEM FOR TUNING PARAMETERS OF ARTIFICIAL NEURAL NETWORKS
1,2,3Technical Cybernetic Department, National Technical University of Ukraine “Igor Sikorsky Kyiv

Polytechnic Institute,” Kyiv, Ukraine
E-mails: 1chumachecko@tk.kpi.ua ORCID 0000-0003-3006-7460, 2serhii.shymkov@gmail.com,

3anatoly.kot@gmail.com
Abstract—This paper focuses on the process of adjusting weights and biases of feed-forward ANN during
their training process. A new algorithm for tuning artificial neural networks parameters has been
proposed to overcome some limitations of existing optimization algorithms and to improve the training
process of neural networks. This proposed algorithm combines the benefits of genetic algorithm and
gradient-based optimization algorithms to improve the speed of training artificial neural networks and to
increase the prediction accuracy of resulting network. The results of artificial neural networks training for
classification task using two-level algorithm are presented and compared in performance with various
gradient-based optimization algorithms.

Index Terms—Neural networks; parametric tuning; training; optimization; genetic algorithms.

I. INTRODUCTION
Nowadays artificial neural networks (ANN) are

being widely used for solving different kinds of
problems that involve large amounts of data, complex
relationship between input parameters or require high
levels of accuracy. Application of ANNs varies from
image recognition and object classification to disease
detection in medical diagnosis, vehicle control and
natural speech recognition.

Feed-forward neural network is a type ANN that
allow information to move throught the network
only in one direction, from the input to the output
layer, without forming any kinds of cycle. This kind
of network can be used to solve various kind tasks,
as even a relatively simple perceptron with one
hidden layer is considered to be a universal
approximator [1] and has the ability to make
decisions based on past experience.

In order to solve particular task with expected
accuraccy and efficiency, parameters of neural
network has to be adapted during the training
process. The training process of ANN allow network
to acquire knowledge about the environment via
learning, which is defined as the process of adapting
free parameters of the network as a result of being
stimulated by the environment [2]. Usually neural
network is being trained by adjusting the values of
weights and biases for each neuron in each hidden
layer. The process of training ANN defines how well
given network will perform for specific task and
thus the choice of traning method is considered to be
one of the most important steps in designing ANN.

II. PROBLEM STATEMENT
The process of tuning parameters of feed-forward

ANN can be formulated as the process of error
function minimization. The error function can be

defined as the function that depends on weights and
biases of the network and by adjusting network
parameters it’s possible to find the minimum of the
error function. That is, optimal weights ,i jw of
particular network can be expressed as:

,

, arg min ,
i j

i j
w

w  

where  is the value of cost function and ,i jw is the
weight between neuron i and j. The cost function
itself is defined as:

2

1 1

1 ˆ() ,
N n

ij ij
i j

y y
N  

  

where N is the amount of training examples; n is the
number of neurons in the last layer of ANN; ijy is

the predicted value of the neuron and ˆijy is the
desired value, provided in the training set.

There are multiple algorithms that are being used
for optimizing error function and finding its
minimum, but they are prone to getting stuck or
slowed down in local minimums, hindering the
training process [3].

Therefore, there is a need for alternative
optimization algorithm that will be able to overcome
some limitations of existing optimization algorithms
and, as a result increase the speed of learning
process and the resulting accuracy of the network.

ІІІ. REVIEW

Optimization algorithms for training ANNs can
be divided into two categories:

38 ISSN 1990-5548 Electronics and Control Systems 2020. N 1(63): 37-45

1) first-order optimization algorithms –
algorithms that are being used for minimizing the
error function of ANN by using gradients for
determining the relationship between error function
and network parameters;

2) second-order optimization algorithms –
algorithms that use second-order derivatives for
minimizing the error function by observing the
change of firs-order derivatives, hinting on the
curvature of error function.

Although second-order optimization algorithms
can offer more insight about the nature of the error
function and are more capable of avoiding local
minimums, they require more computation power to
be computed and do not scale as well as first-order
algorithms [4].

First-order optimization algorithms make use of
backpropagation algorithm for computing the
gradient of the loss function with the respect to
network weights and biases and adjust the
parameters of ANN to achieve the lowest possible
error rate. Backpropagation is a commonly used
algorithm for calculating gradient and consists of the
following steps.

1) Handle the input values x of ANN by
calculating activation values la for neurons in input
layer based on the activation function  .

2) Perform the forward pass by applying weights
to the inputs in each layer and passing the results
forward to the next layer. The neuron activation
value la is defined as:

(),l la z 

where  is the activation function and z is calculated
by applying weights and biases to the activation
value of the previous neuron 1 .l l l lz w a b 

3) Calculate the error of the output layer L based
on cost function C:

().L L
L

С z
a
   


4) Propagate the error back to each layer of the
network by calculating l :

1 1) ,(()l l T l lw z     

for each l = L – 1, L – 2, …, 2, where 1()l Tw  is
transpose of weight matrix for layer l + 1 and ⊙ is
element-wise product.

5) Calculate the gradient with respect to biases:

l
jl

j

С
b


 


and weights:

1 .l l
k jl

jk

С a
w


 



These values will be used later on for adjusting
weights and biases via some optimization algorithm.

The most widely used optimization algorithms
for ANN are gradient descent, Nesterov's accelerated
gradient, AdaGrad, Adadelta, RMSprop and Adam.

Gradient descent or steepest descent is first-order
optimization algorithm, which uses gradient values
for finding minimum of ANN cost function. The
algorithm is based on the observation, that
multivariable function f decreases fastest from the
value at some point a in the direction of the negative
gradient of f at a. In other words, if

.()b a f a  

and if  is small enough, then   ().f a f b
By applying this observation to the goal of

optimizing ANN parameters we will get the step for
gradient descent algorithm:

(),J     

where  is parameters of neural network;  is
learning rate and () J  is the gradient of loss
function with respect to current parameters. By
applying this step iteratively for each training
example, it’s possible to get to the local minimum of
the loss function. The learning rate should be picked
with care for this algorithm, as by using too large
value there is a chance to miss the global minimum,
and using the value that is too small will
considerably slow down the learning process.

Although gradient descent is relatively simple
algorithm to implement, it has several drawbacks.
First of all, it’s possible to get stuck in the local
minimum without getting to the global minimum.
The chances of this problem arising increase with
increase of error surface area, but this problem
doesn’t have universal solution [4]. The surface area
can also contain plateau areas with negligible
gradient, which can slow down the algorithm
significantly. There is also a chance to miss decent
local minimum due to large gradient or learning rate
value. The fourth drawback is the possibility to get
stuck in the area with changing gradients. These
possible problems are depicted in Fig. 1. To
overcome some drawbacks of the gradient descent
some variations of this algorithm were designed.

Nesterov's accelerated gradient [5] is an
optimization algorithm that is based on the gradient
descent, but uses momentum to speed up the
movement in desired direction and to smooth out the
movement in areas with abrupt gradient changes.

O.I. Chumachenko, S.V. Shymkov, A.T. Kot Two-Level System for Tuning Parameters of Artificial Neural Network 39

Fig. 1. Possible errors of gradient descent: (a) finding
nonoptimal local minimum; (b) slowing down due to low

gradient; (c) getting stuck in areas with steep gradient
changes; (d) missing optimum

The idea of using momentum boils down to using
values from previous iterations for updating the
parameters in the current iteration. The formula for
updating network parameters can be defined like this:

,tV   

where tV is parameters change vector for current
iteration:

1 (),t tV V J    

with  being the momentum rate and ()J  is a
gradient descent step. If the gradient direction
doesn’t change, the momentum value will increase,
which will in turn speed up the process of reaching
local minimum. If the gradient descent changes its
direction during the descent process, the movement
will get smoothed out due to the momentum values.
But using momentum like this has one drawback. On
reaching the local minimum momentum will likely
be large enough to cause the algorithm to miss the
local minimum due to the large update step.

This problem is addressed by Nesterov's
accelerated gradient. The algorithm approximates the
future step of gradient descent and takes it into
account during parameters update process. As the
impulse step 1tV  is being used for calculating
parameters update vector, its value can be used to
approximate how exactly the parameters will change.
Then the parameters update vector will look like this:

1 1().t t tV V J V       

AdaGrad [6] is a gradient-based optimization
algorithm that adapts learning rate for each
parameter. Each parameter has its own learning rate
that is being taken into account during network
training. This rate is calculated based on the
previous gradient values of the parameter and is
designed for balancing out the update process of
different parameters. If the parameter is tied with the
often-occurring feature, then the learning rate for
this parameter is being lowered down. If, on the
other hand, some particular feature is pretty rare,
then the learning rate for connected parameters will
increase. This approach allows to handle sparse data
in a better way.

The formula for updating network parameters in
AdaGrad has the following form:

1, , ,
,

* ,t i t i t i
t i

g
G


   

 

where  is smoothing parameter for avoiding
division by zero and usually has a value of 10–6 or
10–8; ,t iG is the sum of squared gradients with
respect to i , accumulated from the start of the
training process and up to iteration t:

2
, 1, , ,t i t i t iG G g 

where gt is gradient of loss function at iteration t and
gt,i is partial derivative with respect to i at t:

 , , .t i t ig J 

The benefit of using AdaGrad for adjusting ANN
parameters is the lack of necessity to manually
adjust learning rate for neural network. But the
consequence of this kind of learning rate adaptation
is that learning rate will be constantly decreasing
and decaying. This is happening because with every
training iteration the value of Gt,i increases. At some
point in time the learning rate will be so small, that
neural network will effectively stop learning and
won’t be able to properly handle new data.

Adadelta [7] is the optimization algorithm that is
based on AdaGrad and which was designed to
overcome the problem with aggressive monotonous
decaying of learning rates in AdaGrad. Instead of
summing up all the values of previous gradients,
Adadelta is effectively limits the calculations to
some fixed amount of gradients w. But the sum of
past w is not being stored directly, instead it’s
defined as decaying average of squared previous
gradients. The moving average of squared gradients

2[]tE g depends on previous average value and
current value of the gradient:

40 ISSN 1990-5548 Electronics and Control Systems 2020. N 1(63): 37-45

2 2 2
1[] [] (1 ,)t t tE g E g g     (1)

where  is the rate of decay.
By replacing the accumulation in parameters

update vector we’ll get new formula for updating
parameters:

,2
.

[]
t t i

t

g
E g


  

 

 In order to have the same units in the formula for
calculating the parameters update step, Adadelta
uses root mean square of parameters update instead
of learning rate, approximating its value at iteration t
by using values from t – 1:

1
,

[]
[]

,t
t t i

t

RMS g
RMS g


  

where []tRMS g is root mean square of squared
gradients:

2[] [] ,t tRMS g E g  

and 1[]tRMS  is root mean square of parameters
update:

2[] [] ,t tRMS E    

with 2[]tE  being defined similarly to equation (1):
2 2 2

1[] [] (.1)t t t t tE E        

 Finally, values of network parameters at iteration
t can be calculated like this:

1 .t t t    

 By improving AdaGrad, Adadelta allows to tune
learning rate for each individual parameter without
causing it to decay.
 RMSprop is another adaptive optimization
algorithm that is based on AdaGrad and overcomes
the problem with decaying learning rates. Just like
Adadelta, this algorithm uses moving average of
squared gradients. RMSprop uses value from
equation (1), but with fixed rate of decay:

2 2 2
1[] 0.9 [] 0.1 .t t tE g E g g 

 The formula for updating network parameters
looks like this:

1 ,2
.

[]
t t t i

t

g
E g




   

 

 Unlike Adadelta, RMSprop requires initial
learning rate to be set, usually to some small value
like 10–3.

 Adam [8] is a first-order optimization algorithm,
based on adaptive moment prediction. Instead of
storing only decaying average of squared past
gradients like in Adadelta and RMSprop, Adam also
stores decaying average of past gradients, which
behaves like momentum from gradient descent with
momentum. This algorithm, like Adagrad, uses
individual learning rates for each parameter. To
calculate the rates Adam estimates values of
first(mean) and second(variance) moment of the
gradient. Decaying average of gradients and squared
gradients is used for estimating moments:

 1 1 11 ,t t tm m g  

  2
2 1 2 ,1t t tv v g  

where tm is the estimation of the mean; tv is the
estimation of variance, with 1 and 2 representing
rates of decay.
 As at the start of the algorithm tm and tv have
zero values, they are biased toward zero. This
behavior is especially noticeable when rates of decay
are close to one. In order to compensate for this bias,
corrected estimations are used instead:

1

ˆ ,
1

t
t t

mm 
 

2

ˆ ,
1

t
t t

vv 
 

 The formula for updating network parameters has
the following form:

1 ˆ .
ˆt t t

t

m
v


   
 

Decay rates proposed for usage in this algorithm
are the following: 0.9 for 1 , 0.999 for 2 and 10–8
for smoothing rate  .

Genetics algorithms are a subclass of
evolutionary algorithm that are used for dealing with
optimization problem and searching solution by
imitating the process of natural selection [9]. Every
possible solution for the optimization problem is
encoded as individual with a set of parameters or
genes. During the execution of the algorithm, the set
of possible solutions changes, moving in the
direction of the best solution by changing the
parameters of individuals. The idea of such
algorithms is that eventually after numerous
generations the set of optimal solutions will be
discovered in a way that looks like natural selection.

Among the benefits of using genetical algorithms
are the fact that they do not require detailed
information about environment, provide a set of
good solutions instead of just one and allow to

O.I. Chumachenko, S.V. Shymkov, A.T. Kot Two-Level System for Tuning Parameters of Artificial Neural Network 41

effectively search through all surface of optimal
solutions. Genetic algorithms are also less prone to
getting stuck in local minimum or maximum due to
the nature of their search [10] and can start the
search for solution from different points
simultaneously, improving the chances for getting to
the global minimum or maximum. Drawbacks of
genetic algorithms include the complexity of
converging toward one single optimal solution due
to heuristic nature of the algorithms, computational
cost of calculating fitness function for complex
problems and small search efficiency in cases where
the surface area of target function is smooth.

There are multiple variations of genetic
algorithms which differ in the way individuals are
encoded, genetic operations are applied or what
additional steps they contain. One of the special
kinds of genetic algorithms are multi-objective
genetic algorithms, which are designed to handle the
problem of multi-objective optimization. These
kinds of algorithms are usually based on the
principle of Pareto optimality. Pareto optimality
characterizes the state of the system in which it’s not
possible to improve one aspect of the system without
hindering another. Pareto front is the set of all
system states, that are considered to be Pareto
optimal. The task of multi-objective optimization
algorithms is to find solutions that are as close as
possible to the Pareto set for this particular system.

SPEA2 [11] is multi-objective optimization
algorithm, that allows genetic algorithm to be used
for simultaneously optimizing several target
functions. The idea of the algorithm is to find and
maintain the front of nondominated solutions, which
will ideally consist of Pareto optimal solutions. On
each iteration of the algorithm archive of non-
dominated solutions is being saved apart from the
population. This archive has fixed size and ensures a
form of elitism to guarantee that the quality of
solutions won’t degrade.

SPEA2 consists of the following steps:
 1) Initialization. During the first iteration initial
population P0 is created of fixed size N. Individuals
in the population are generated randomly. Empty
archive A0 is initialized on this step as well. The goal
of the archive is to maintain non-dominated
solutions between generations.
 2) Fitness calculation. Fitness value F of each
individual in population Pt and archive At on t
iteration is calculated.
 3) Environmental selection. All nondominated
individuals from current population Pt and archive At
are copied into next generation archive At+1. If the
size of new archive is larger than desired size Na,
then excessive individuals are removed from the
archive. If the archive size is smaller than desired,

then archive is populated by dominated individuals
from current population.
 4) Termination. If iteration counter t exceeds the
maximum amount of algorithm iterations or some
other termination condition has been reached, then
the algorithm terminates its execution. All
individuals from new archive are considered to be
the solution to optimization task.
 5) Mate selection. Binary tournament selection is
performed in order to fill the mating pool.
 6) Evolution. Crossover and mutation operators
are being applied to the individuals in mating pool.
The result of applying these operators is new
population Pt+1. Afterwards the generation counter is
incremented and the algorithm resumes from step 2.

Genetic algorithms are known for being able to
get closer to the global minimum without getting
stuck at points of local minimum and are used for
performing global search over the whole solution
area. But such algorithms are not guaranteed to
converge towards the best solution and can be less
effective than gradient-based algorithms. On the
other hand, gradient-based optimization algorithms
are better at performing local search and can be used
for finding single optimal solution, but their
behavior depends on the starting point of the search.

Thus, in order to increase the chances of getting
to the global minimum and avoid getting trapped in
saddle points and local minimum points, it’s
proposed to use the combination of genetic
algorithm and gradient-based optimization algorithm
for tuning the parameters of ANN.

IV. PROBLEM SOLUTION
Two-level algorithm consists of two sequential

steps: genetic algorithm execution and parameter
optimization by optimization algorithm. Genetic
algorithm step is used for selecting initial values for
weights and biases of ANN, which will then be
further tuned by optimization algorithm on the next
step. The general structure of the system is presented
in Fig. 2.

Genetic algorithm stage consists of the following
steps:

1) Create the initial population of fixed size by
generating individuals with random weights and
biases.

2) Evaluate the efficiency of ANN on training set
by calculating the loss function and the classification
accuracy. To calculate the loss for classification tasks
cross entropy is being used:

1

ln(),
M

i i
i

L y p


 

where M is the number of possible classes, yi is the
probability of observation belonging to class i, pi is

42 ISSN 1990-5548 Electronics and Control Systems 2020. N 1(63): 37-45

the predicted probability of observation j belonging
to i. Accuracy of classification A is defined as the
relation of correctly classified observations C to all
observations N:

.CA
N



Fig. 2. Scheme of two-level system for tuning ANN
parameters

 These two values are used as objective functions
in optimization, with the goal to minimize the loss
function and maximize the accuracy function.
 3) Calculate the fitness values of individuals.
 4) Populate the archive with individuals from
Pareto front and current population.
 5) Apply crossover and mutation operators with
given probability to individuals from archive, create
new population.
 For encoding ANN parameters as individuals,
real-value encoding is used. All weights and biases
are recorded into the array of fixed size I:

,w bI N N 

where Nw is the total amount of all weights in
network and Nb is the total amount of biases.
 Crossover is performed in form of binary
tournament selection. Two potential mate candidates
are being chosen from the whole set of mates and
then they are compared based on their fitness value.
The individuals with higher fitness value is placed
into mating pool. The process is repeated until the
mating pool is filled. After that every two
individuals from the mating pool are crossed with

probability Pc. Crossover is performed using one-
point method. Crossover point is selected at random
and all the parameters of parents after this point are
being swapped. Mutation of individuals is performed
with probability Pm. During the mutation one
random weight or bias is replaced with random
value from a range of allowed values.
 After the termination of genetic algorithm stage,
chosen parameters are passed to the next stage. This
stage is the stage of further tuning the network
parameters via optimization algorithm. The
following steps are performed on this stage:
 1) Create the model for ANNs, using chosen
weights and biases from previous stage.
 2) Train neural networks until termination
condition is reached.
 3) Evaluate the performance of networks by
making prediction on test set.

V. RESULTS OF RESEARCH
Evaluation of performance has been performed on

the task of classifying images of clothes. ANNs were
trained on the Fashion-MNIST dataset that consists
of 60000 learning examples and 10000 test
examples. Each example is represented in form of
grayscale image 28x28 pixels and can belong to one
of ten classes (T-shirt, pants, sweeter, dress, cloak,
sandals, shirt, sneakers, bag or ankle boots).

Learning set has been divided into two groups:
training set (80%, 48000 images) which was used by
optimization algorithms for adjusting parameters,
and validation set (20%, 12000 images) for
calculating loss and accuracy. Training would stop
on achieving 85% accuracy, after which the number
of training epochs would be calculated for
comparing performance.

Testing has been performed on fully-connected
feedforward network that had 784 neurons in input
layer, two hidden layers with 512 neurons in each
and output layer with 10 neurons.

Each algorithm has been tested ten times, then the
average amount of epochs required to achieve 85%
accuracy has been calculated. The results of
comparison are presented in the Table I.

Efficiency of using two-level algorithm in
comparison with using steepest descent or another
gradient-based optimization algorithm is presented in
Table II.

The following genetic algorithm settings has been
used: population size – 25 individuals, achieve size –
25 individuals, amount of iterations – 10, crossover
probability – 80%, mutation probability – 20%.

The following parameters of optimization
algorithms has been used: method of steepest
descent, Adagrad, RMSProp and Adam were used

O.I. Chumachenko, S.V. Shymkov, A.T. Kot Two-Level System for Tuning Parameters of Artificial Neural Network 43

with learning rate of 0.01, Nesterov’s accelerated
gradient has been used with learning rate of 0.01 and
momentum rate of 0.9, Adam optimizer has been
used with learning rate set to 1. These settings have
been chosen experimentally in order to increase the
efficiency of the algorithms.

TABLE I. COMPARISON OF REQUIRED EPOCH
AMOUNT

Optimization
algorithm

Epoch amount
Optimizer only Two-level system

Steepest
descent

3666.0 2876.0

Nesterov’s
accelerated
gradient

1732.5 1425.5

Adagrad 1257.0 1037.0
RMSProp 309.0 295.2
Adadelta 203.2 183.4
Adam 52.7 48.7

TABLE II. COMPARISON OF EFFICIENCY INCREASE

Optimization
algorithm

Increase in efficiency of two-
level algorithm, %

In comparison
with steepest

descent

In comparison
with one-level
optimization

algorithm
Steepest descent – 27.47

Nesterov’s
accelerated
gradient

157.17 21.54

Adagrad 253.52 21.21
RMSProp 1141.87 4.68
Adadelta 1898.91 10.79
Adam 7427.72 8.21

VI. CONCLUSIONS
The paper deals with the problem of tuning

parameters of ANN in order to minimize the error
function of network. A new two-level optimization
algorithm for optimizing weights and biases of ANN
is proposed, which consists of genetic algorithm on
the first stage and gradient-based optimization
algorithm on the second stage. It is shown that the
usage of two-level system decreases the number of
epochs required to achieve desired level of accuracy
and is more effective than gradient-based
optimization algorithms.

REFERENCES

[1] Kurt Hornik, Maxwell Stinchcombe, Halbert White,
“Multilayer feedforward networks are universal
approximators,” Neural Networks, vol. 2, Issue 5,
pp. 359–366, 1989. Print. doi:10.1016/0893-
6080(89)90020-8

[2] Simon Haykin, Neural Networks: A Comprehensive
Foundation, 2nd ed., Upper Saddle River, NJ: Prentice
Hall PTR, 1998. Print; ISBN: 0132733501

[3] Nick McClure, TensorFlow Machine Learning
Cookbook: Over 60 recipes to build intelligent
machine learning systems with the power of Python,
2nd ed., Birmingham, UK: Packt Publishing, 2018.
Print; ISBN: 1789131685

[4] David Kriesel, A Brief Introduction to Neural
Networks [Online]. Available:
http://www.dkriesel.com/en/science/neural_network

[5] Yurii Nesterov, “A method for unconstrained convex
minimization problem with the rate of convergence
o(1/k2),” Soviet. Math. Docl., vol. 269, pp. 543–547,
1983. Print.

[6] Kurt Hornik, Maxwell Stinchcombe, Halbert White,
“Adaptive Subgradient Methods for Online Learning
and Stochastic Optimization,” The Journal of
Machine Learning Research, vol. 12, pp. 2121–2159,
2011. Print.

[7] Matthew D. Zeiler, ADADELTA: An Adaptive
Learning Rate Method, 2012 [Online]. Available:
https://arxiv.org/abs/1212.5701

[8] Diederik P. Kingma and Jimmy Ba, “Adam: A
Method for Stochastic Optimization,” Presented at at
the 3rd International Conference for Learning
Representations, San Diego, 2015 [Online]

 Available: https://arxiv.org/abs/1412.6980
[9] David E. Goldberg, Genetic Algorithms in Search,

Optimization & Machine Learning, Boston, MA:
Addison-Wesley Longman Publishing Co., 1989.
Print; ISBN: 0201157675

[10] Dan Simon, Evolutionary Optimization Algorithms,
Hoboken, NJ: John Wiley & Sons, Inc., 2013. Print;
ISBN: 0470937416

[11] Eckart Zitzler, Marco Laumanns, and Lothar Thiele
(May 2001), SPEA2: Improving the Strength Pareto
Evolutionary Algorithm, Swiss Federal Institute of
Technology, Zurich, Switzerland [Online] Available:
https://www.research-
collection.ethz.ch/bitstream/handle/20.500.11850/145
755/eth-24689-01.pdf, doi: 10.3929/ethz-a-
004284029

Received January 19, 2020.

44 ISSN 1990-5548 Electronics and Control Systems 2020. N 1(63): 37-45

Chumachenko Olena. orcid.org/0000-0003-3006-7460. Doctor of Engineering Science. Associate Professor.
Technical Cybernetic Department, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute,”
Kyiv, Ukraine.
Education: Georgian Polytechnic Institute, Tbilisi, Georgia, (1980).
Research area: system analysis, artificial neuron networks.
Publications: more than 80 papers.
E-mail: chumachecko@tk.kpi.ua

Shymkov Serhii. Bachelor.
Technical Cybernetic Department, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”,
Kyiv, Ukraine.
Research area: artificial neural network, deep learning.
E-mail: serhii.shymkov@gmail.com

Kot Anatoliy. Post-graduate student.
Technical Cybernetic Department, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute,”
Kyiv, Ukraine.
Education: National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute,” Kyiv, Ukraine, (2017).
Research area: artificial Intelligence.
Publications: 4.
E-mail: anatoly.kot@gmail.com

О. І. Чумаченко, С. В. Шимков, А. T. Кот. Дворівнева система налаштування параметрів штучних
нейронних мереж
Статтю присвячено процесу коригування вагових коефіцієнтів та коефіцієнтів зсуву штучних нейронних мереж
прямого розповсюдження під час їх навчання. Запропоновано новий алгоритм для налаштування параметрів
штучних нейронних мереж для подолання недоліків існуючих оптимізаційних алгоритмів та покращення
процесу навчання нейронних мереж. Запропонований алгоритм поєднує переваги генетичного алгоритму та
градієнтного алгоритму оптимізації з метою підвищення швидкості навчання штучних нейронних мереж та
покращення точності передбачення мережі. Результати тренування штучних нейронних мереж для задачі
класифікації порівнюються з різними градієнтними алгоритмами оптимізації.
Ключові слова: нейронні мережі; налаштування параметрів; навчання; оптимізація; генетичні алгоритми.

Чумаченко Олена Іллівна. orcid.org/0000-0003-3006-7460. Доктор технічних наук. Доцент.
Кафедра технічної кібернетики, Національний технічний університет України «Київський політехнічний
інститут ім. Ігоря Сікорського», Київ, Україна.
Освіта: Грузинський політехнічний інститут, Тбілісі, Грузія, (1980).
Напрямок наукової діяльності: системний аналіз, штучні нейронні мережі.
Кількість публікацій: понад 80 наукових робіт.
E-mail: chumachecko@tk.kpi.ua

Шимков Сергій Вікторович. Бакалавр.
Національний технічний університет України «Київський політехнічний інститут ім. Ігоря Сікорського», Київ,
Україна.
Напрямок наукової діяльності: штучні нейронні мережі, глибоке навчання.
E-mail: serhii.shymkov@gmail.com
Кот Анатолій Тарасович. Аспірант.
Кафедра технічної кібернетики, Національний технічний університет України «Київський політехнічний
інститут ім. Ігоря Сікорського», Київ, Україна.
Освіта: Національний технічний університет України «Київський політехнічний інститут ім. Ігоря Сікорського»,
Київ, Україна, (2017).
Напрям наукової діяльності: штучний інтелект.
Кількість публікацій: 34.
E-mail: anatoly.kot@gmail.com

О. И. Чумаченко, С. В. Шимков. А. Т. Кот. Двухуровневая система настройки параметров искусственных
нейронных сетей
Статья посвящена процессу корректировки весовых коэффициентов и коэффициентов смещения искусственных
нейронных сетей прямого распространения во время их обучения. Предложен новый алгоритм для настройки
параметров искусственных нейронных сетей для преодоления недостатков существующих оптимизационных
алгоритмов и улучшения процесса обучения нейронных сетей. Предложенный алгоритм сочетает преимущества
генетического алгоритма и градиентного алгоритма оптимизации с целью повышения скорости обучения

O.I. Chumachenko, S.V. Shymkov, A.T. Kot Two-Level System for Tuning Parameters of Artificial Neural Network 45

искусственных нейронных сетей и улучшения точности предсказания сети. Результаты тренировки
искусственных нейронных сетей для задачи классификации сравниваются с различными градиентными
методами оптимизации.
Ключевые слова: нейронные сети; настройка параметров; обучение; оптимизация; генетические алгоритмы.
Чумаченко Елена Ильинична. orcid.org/0000-0003-3006-7460.
Доктор технических наук. Доцент.
Кафедра технической кибернетики, Национальный технический университет Украины «Киевский
политехнический институт им. Игоря Сикорского», Киев, Украина.
Образование: Грузинский политехнический институт, Тбилиси, Грузия, (1980).
Направление научной деятельности: системный анализ, искусственные нейронные сети.
Количество публикаций: более 80 научных работ.
E-mail: chumachecko@tk.kpi.ua

Шимков Сергей Викторович. Бакалавр.
Национальный технический университет Украины «Киевский политехнический институт им. Игоря
Сикорского», Киев, Украина.
Направление научной деятельности: искусственные нейронные сети, глубокое обучение.
E-mail: serhii.shymkov@gmail.com

Кот Анатолий Тарасович. Аспирант.
Кафедра технической кибернетики, Национальный технический университет Украины «Киевский
политехнический институт им. Игоря Сикорского», Киев, Украина.
Образование: Национальный технический университет Украины «Киевский политехнический институт им.
Игоря Сикорского», Киев, Украина, (2017).
Направление научной деятельности: искусственный интеллект.
Количество публикаций: 4.
E-mail: anatoly.kot@gmail.com

