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Abstract—This paper focuses on the process of adjusting weights and biases of feed-forward ANN during 
their training process. A new algorithm for tuning artificial neural networks parameters has been 
proposed to overcome some limitations of existing optimization algorithms and to improve the training 
process of neural networks. This proposed algorithm combines the benefits of genetic algorithm and 
gradient-based optimization algorithms to improve the speed of training artificial neural networks and to 
increase the prediction accuracy of resulting network. The results of artificial neural networks training for 
classification task using two-level algorithm are presented and compared in performance with various 
gradient-based optimization algorithms. 

Index Terms—Neural networks; parametric tuning; training; optimization; genetic algorithms.

I. INTRODUCTION 
Nowadays artificial neural networks (ANN) are 

being widely used for solving different kinds of 
problems that involve large amounts of data, complex 
relationship between input parameters or require high 
levels of accuracy. Application of ANNs varies from 
image recognition and object classification to disease 
detection in medical diagnosis, vehicle control and 
natural speech recognition. 

Feed-forward neural network is a type ANN that 
allow information to move throught the network 
only in one direction, from the input to the output 
layer, without forming any kinds of cycle. This kind 
of network can be used to solve various kind tasks, 
as even a relatively simple perceptron with one 
hidden layer is considered to be a universal 
approximator [1] and has the ability to make 
decisions based on past experience. 

In order to solve particular task with expected 
accuraccy and efficiency, parameters of neural 
network has to be adapted during the training 
process. The training process of ANN allow network 
to acquire knowledge about the environment via 
learning, which is defined as the process of adapting 
free parameters of the network as a result of being 
stimulated by the environment [2]. Usually neural 
network is being trained by adjusting the values of 
weights and biases for each neuron in each hidden 
layer. The process of training ANN defines how well 
given network will perform for specific task and 
thus the choice of traning method is considered to be 
one of the most important steps in designing ANN. 

II. PROBLEM STATEMENT 
The process of tuning parameters of feed-forward 

ANN can be formulated as the process of error 
function minimization. The error function can be 

defined as the function that depends on weights and 
biases of the network and by adjusting network 
parameters it’s possible to find the minimum of the 
error function. That is, optimal weights ,i jw  of 
particular network can be expressed as: 

,

, arg min ,
i j

i j
w

w     

where   is the value of cost function and ,i jw  is the 
weight between neuron i and j. The cost function 
itself is defined as: 
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where N is the amount of training examples; n is the 
number of neurons in the last layer of ANN; ijy  is 

the predicted value of the neuron and ˆijy  is the 
desired value, provided in the training set. 

There are multiple algorithms that are being used 
for optimizing error function and finding its 
minimum, but they are prone to getting stuck or 
slowed down in local minimums, hindering the 
training process [3]. 

Therefore, there is a need for alternative 
optimization algorithm that will be able to overcome 
some limitations of existing optimization algorithms 
and, as a result increase the speed of learning 
process and the resulting accuracy of the network. 

ІІІ. REVIEW 

Optimization algorithms for training ANNs can 
be divided into two categories: 
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1) first-order optimization algorithms – 
algorithms that are being used for minimizing the 
error function of ANN by using gradients for 
determining the relationship between error function 
and network parameters; 

2) second-order optimization algorithms – 
algorithms that use second-order derivatives for 
minimizing the error function by observing the 
change of firs-order derivatives, hinting on the 
curvature of error function. 

Although second-order optimization algorithms 
can offer more insight about the nature of the error 
function and are more capable of avoiding local 
minimums, they require more computation power to 
be computed and do not scale as well as first-order 
algorithms [4]. 

First-order optimization algorithms make use of 
backpropagation algorithm for computing the 
gradient of the loss function with the respect to 
network weights and biases and adjust the 
parameters of ANN to achieve the lowest possible 
error rate. Backpropagation is a commonly used 
algorithm for calculating gradient and consists of the 
following steps. 

1) Handle the input values x of ANN by 
calculating activation values la  for neurons in input 
layer based on the activation function  . 

2) Perform the forward pass by applying weights 
to the inputs in each layer and passing the results 
forward to the next layer. The neuron activation 
value la  is defined as: 

( ),l la z   

where   is the activation function and z is calculated 
by applying weights and biases to the activation 
value of the previous neuron 1 .l l l lz w a b   

3) Calculate the error of the output layer L based 
on cost function C: 

( ).L L
L

С z
a
   


 

4) Propagate the error back to each layer of the 
network by calculating l : 

1 1) ,( ( )l l T l lw z       

for each l = L – 1, L – 2, …, 2, where 1( )l Tw   is 
transpose of weight matrix for layer l + 1 and ⊙ is 
element-wise product. 

5) Calculate the gradient with respect to biases: 

l
jl

j
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
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and weights:  
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
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These values will be used later on for adjusting 
weights and biases via some optimization algorithm. 

The most widely used optimization algorithms 
for ANN are gradient descent, Nesterov's accelerated 
gradient, AdaGrad, Adadelta, RMSprop and Adam. 

Gradient descent or steepest descent is first-order 
optimization algorithm, which uses gradient values 
for finding minimum of ANN cost function. The 
algorithm is based on the observation, that 
multivariable function f decreases fastest from the 
value at some point a in the direction of the negative 
gradient of f at a. In other words, if 

.( )b a f a    

and if   is small enough, then   ( ).f a f b  
By applying this observation to the goal of 

optimizing ANN parameters we will get the step for 
gradient descent algorithm: 

( ),J       

where   is parameters of neural network;   is 
learning rate and ( ) J   is the gradient of loss 
function with respect to current parameters. By 
applying this step iteratively for each training 
example, it’s possible to get to the local minimum of 
the loss function. The learning rate should be picked 
with care for this algorithm, as by using too large 
value there is a chance to miss the global minimum, 
and using the value that is too small will 
considerably slow down the learning process. 

Although gradient descent is relatively simple 
algorithm to implement, it has several drawbacks. 
First of all, it’s possible to get stuck in the local 
minimum without getting to the global minimum. 
The chances of this problem arising increase with 
increase of error surface area, but this problem 
doesn’t have universal solution [4]. The surface area 
can also contain plateau areas with negligible 
gradient, which can slow down the algorithm 
significantly. There is also a chance to miss decent 
local minimum due to large gradient or learning rate 
value. The fourth drawback is the possibility to get 
stuck in the area with changing gradients. These 
possible problems are depicted in Fig. 1. To 
overcome some drawbacks of the gradient descent 
some variations of this algorithm were designed. 

Nesterov's accelerated gradient [5] is an 
optimization algorithm that is based on the gradient 
descent, but uses momentum to speed up the 
movement in desired direction and to smooth out the 
movement in areas with abrupt gradient changes. 
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Fig. 1. Possible errors of gradient descent: (a) finding 
nonoptimal local minimum; (b) slowing down due to low 

gradient; (c) getting stuck in areas with steep gradient 
changes; (d) missing optimum 

The idea of using momentum boils down to using 
values from previous iterations for updating the 
parameters in the current iteration. The formula for 
updating network parameters can be defined like this: 

,tV     

where tV  is parameters change vector for current 
iteration: 

1 ( ),t tV V J      

with   being the momentum rate and ( )J   is a 
gradient descent step. If the gradient direction 
doesn’t change, the momentum value will increase, 
which will in turn speed up the process of reaching 
local minimum. If the gradient descent changes its 
direction during the descent process, the movement 
will get smoothed out due to the momentum values. 
But using momentum like this has one drawback. On 
reaching the local minimum momentum will likely 
be large enough to cause the algorithm to miss the 
local minimum due to the large update step. 

This problem is addressed by Nesterov's 
accelerated gradient. The algorithm approximates the 
future step of gradient descent and takes it into 
account during parameters update process. As the 
impulse step 1tV   is being used for calculating 
parameters update vector, its value can be used to 
approximate how exactly the parameters will change. 
Then the parameters update vector will look like this: 

1 1( ).t t tV V J V         

AdaGrad [6] is a gradient-based optimization 
algorithm that adapts learning rate for each 
parameter. Each parameter has its own learning rate 
that is being taken into account during network 
training. This rate is calculated based on the 
previous gradient values of the parameter and is 
designed for balancing out the update process of 
different parameters. If the parameter is tied with the 
often-occurring feature, then the learning rate for 
this parameter is being lowered down. If, on the 
other hand, some particular feature is pretty rare, 
then the learning rate for connected parameters will 
increase. This approach allows to handle sparse data 
in a better way. 

The formula for updating network parameters in 
AdaGrad has the following form: 

1, , ,
,

* ,t i t i t i
t i

g
G


   

 
 

where   is smoothing parameter for avoiding 
division by zero and usually has a value of 10–6 or 
10–8; ,t iG  is the sum of squared gradients with 
respect to i , accumulated from the start of the 
training process and up to iteration t: 

2
, 1, , ,t i t i t iG G g   

where gt is gradient of loss function at iteration t and 
gt,i  is partial derivative with respect to i  at t: 

 , , .t i t ig J   

The benefit of using AdaGrad for adjusting ANN 
parameters is the lack of necessity to manually 
adjust learning rate for neural network. But the 
consequence of this kind of learning rate adaptation 
is that learning rate will be constantly decreasing 
and decaying. This is happening because with every 
training iteration the value of Gt,i increases. At some 
point in time the learning rate will be so small, that 
neural network will effectively stop learning and 
won’t be able to properly handle new data. 

Adadelta [7] is the optimization algorithm that is 
based on AdaGrad and which was designed to 
overcome the problem with aggressive monotonous 
decaying of learning rates in AdaGrad. Instead of 
summing up all the values of previous gradients, 
Adadelta is effectively limits the calculations to 
some fixed amount of gradients w. But the sum of 
past w is not being stored directly, instead it’s 
defined as decaying average of squared previous 
gradients. The moving average of squared gradients 

2[ ]tE g  depends on previous average value and 
current value of the gradient: 



40                                                                    ISSN 1990-5548   Electronics and Control Systems  2020. N 1(63): 37-45 
 

2 2 2
1[ ] [ ] (1 ,)t t tE g E g g                   (1) 

where  is the rate of decay. 
By replacing the accumulation in parameters 

update vector we’ll get new formula for updating 
parameters: 

,2
.

[ ]
t t i

t

g
E g


  

 
 

 In order to have the same units in the formula for 
calculating the parameters update step, Adadelta 
uses root mean square of parameters update instead 
of learning rate, approximating its value at iteration t 
by using values from t – 1: 

1
,

[ ]
[ ]

,t
t t i

t

RMS g
RMS g


    

where [ ]tRMS g  is root mean square of squared 
gradients: 

2[ ] [ ] ,t tRMS g E g    

and 1[ ]tRMS   is root mean square of parameters 
update: 

2[ ] [ ] ,t tRMS E      

with 2[ ]tE   being defined similarly to equation (1): 
2 2 2

1[ ] [ ] ( .1 )t t t t tE E          

 Finally, values of network parameters at iteration 
t can be calculated like this: 

1 .t t t      

 By improving AdaGrad, Adadelta allows to tune 
learning rate for each individual parameter without 
causing it to decay. 
 RMSprop is another adaptive optimization 
algorithm that is based on AdaGrad and overcomes 
the problem with decaying learning rates. Just like 
Adadelta, this algorithm uses moving average of 
squared gradients. RMSprop uses value from 
equation (1), but with fixed rate of decay: 

2 2 2
1[ ] 0.9 [ ] 0.1 .t t tE g E g g   

 The formula for updating network parameters 
looks like this: 

1 ,2
.

[ ]
t t t i

t

g
E g




   

 
 

 Unlike Adadelta, RMSprop requires initial 
learning rate to be set, usually to some small value 
like 10–3. 

 Adam [8] is a first-order optimization algorithm, 
based on adaptive moment prediction. Instead of 
storing only decaying average of squared past 
gradients like in Adadelta and RMSprop, Adam also 
stores decaying average of past gradients, which 
behaves like momentum from gradient descent with 
momentum. This algorithm, like Adagrad, uses 
individual learning rates for each parameter. To 
calculate the rates Adam estimates values of 
first(mean) and second(variance) moment of the 
gradient. Decaying average of gradients and squared 
gradients is used for estimating moments: 

 1 1 11 ,t t tm m g    

  2
2 1 2 ,1t t tv v g    

where tm  is the estimation of the mean; tv  is the 
estimation of variance, with 1  and 2  representing 
rates of decay. 
 As at the start of the algorithm tm  and tv  have 
zero values, they are biased toward zero. This 
behavior is especially noticeable when rates of decay 
are close to one. In order to compensate for this bias, 
corrected estimations are used instead: 

1

ˆ ,
1

t
t t

mm 
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t
t t

vv 
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 The formula for updating network parameters has 
the following form: 

1 ˆ .
ˆt t t

t

m
v


   
 

 

Decay rates proposed for usage in this algorithm 
are the following: 0.9 for 1 , 0.999 for 2  and 10–8 
for smoothing rate  . 

Genetics algorithms are a subclass of 
evolutionary algorithm that are used for dealing with 
optimization problem and searching solution by 
imitating the process of natural selection [9]. Every 
possible solution for the optimization problem is 
encoded as individual with a set of parameters or 
genes. During the execution of the algorithm, the set 
of possible solutions changes, moving in the 
direction of the best solution by changing the 
parameters of individuals. The idea of such 
algorithms is that eventually after numerous 
generations the set of optimal solutions will be 
discovered in a way that looks like natural selection. 

Among the benefits of using genetical algorithms 
are the fact that they do not require detailed 
information about environment, provide a set of 
good solutions instead of just one and allow to 
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effectively search through all surface of optimal 
solutions. Genetic algorithms are also less prone to 
getting stuck in local minimum or maximum due to 
the nature of their search [10] and can start the 
search for solution from different points 
simultaneously, improving the chances for getting to 
the global minimum or maximum. Drawbacks of 
genetic algorithms include the complexity of 
converging toward one single optimal solution due 
to heuristic nature of the algorithms, computational 
cost of calculating fitness function for complex 
problems and small search efficiency in cases where 
the surface area of target function is smooth. 

There are multiple variations of genetic 
algorithms which differ in the way individuals are 
encoded, genetic operations are applied or what 
additional steps they contain. One of the special 
kinds of genetic algorithms are multi-objective 
genetic algorithms, which are designed to handle the 
problem of multi-objective optimization. These 
kinds of algorithms are usually based on the 
principle of Pareto optimality. Pareto optimality 
characterizes the state of the system in which it’s not 
possible to improve one aspect of the system without 
hindering another. Pareto front is the set of all 
system states, that are considered to be Pareto 
optimal. The task of multi-objective optimization 
algorithms is to find solutions that are as close as 
possible to the Pareto set for this particular system. 

SPEA2 [11] is multi-objective optimization 
algorithm, that allows genetic algorithm to be used 
for simultaneously optimizing several target 
functions. The idea of the algorithm is to find and 
maintain the front of nondominated solutions, which 
will ideally consist of Pareto optimal solutions. On 
each iteration of the algorithm archive of non-
dominated solutions is being saved apart from the 
population. This archive has fixed size and ensures a 
form of elitism to guarantee that the quality of 
solutions won’t degrade.  

SPEA2 consists of the following steps: 
 1) Initialization. During the first iteration initial 
population P0 is created of fixed size N. Individuals 
in the population are generated randomly. Empty 
archive A0 is initialized on this step as well. The goal 
of the archive is to maintain non-dominated 
solutions between generations. 
 2) Fitness calculation. Fitness value F of each 
individual in population Pt and archive At on t 
iteration is calculated. 
 3) Environmental selection. All nondominated 
individuals from current population Pt and archive At 
are copied into next generation archive At+1. If the 
size of new archive is larger than desired size Na, 
then excessive individuals are removed from the 
archive. If the archive size is smaller than desired, 

then archive is populated by dominated individuals 
from current population. 
 4) Termination. If iteration counter t exceeds the 
maximum amount of algorithm iterations or some 
other termination condition has been reached, then 
the algorithm terminates its execution. All 
individuals from new archive are considered to be 
the solution to optimization task. 
 5) Mate selection. Binary tournament selection is 
performed in order to fill the mating pool. 
 6) Evolution. Crossover and mutation operators 
are being applied to the individuals in mating pool. 
The result of applying these operators is new 
population Pt+1. Afterwards the generation counter is 
incremented and the algorithm resumes from step 2.  

Genetic algorithms are known for being able to 
get closer to the global minimum without getting 
stuck at points of local minimum and are used for 
performing global search over the whole solution 
area. But such algorithms are not guaranteed to 
converge towards the best solution and can be less 
effective than gradient-based algorithms. On the 
other hand, gradient-based optimization algorithms 
are better at performing local search and can be used 
for finding single optimal solution, but their 
behavior depends on the starting point of the search. 

Thus, in order to increase the chances of getting 
to the global minimum and avoid getting trapped in 
saddle points and local minimum points, it’s 
proposed to use the combination of genetic 
algorithm and gradient-based optimization algorithm 
for tuning the parameters of ANN.  

IV. PROBLEM SOLUTION 
Two-level algorithm consists of two sequential 

steps: genetic algorithm execution and parameter 
optimization by optimization algorithm. Genetic 
algorithm step is used for selecting initial values for 
weights and biases of ANN, which will then be 
further tuned by optimization algorithm on the next 
step. The general structure of the system is presented 
in Fig. 2. 

Genetic algorithm stage consists of the following 
steps: 

1) Create the initial population of fixed size by 
generating individuals with random weights and 
biases. 

2) Evaluate the efficiency of ANN on training set 
by calculating the loss function and the classification 
accuracy. To calculate the loss for classification tasks 
cross entropy is being used: 

1

ln( ),
M

i i
i

L y p


   

where M is the number of possible classes, yi is the 
probability of observation belonging to class i, pi is 
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the predicted probability of observation j belonging 
to i. Accuracy of classification A is defined as the 
relation of correctly classified observations C to all 
observations N: 

.CA
N

  

 
 

Fig. 2. Scheme of two-level system for tuning ANN 
parameters 

 These two values are used as objective functions 
in optimization, with the goal to minimize the loss 
function and maximize the accuracy function. 
 3) Calculate the fitness values of individuals. 
 4) Populate the archive with individuals from 
Pareto front and current population. 
 5) Apply crossover and mutation operators with 
given probability to individuals from archive, create 
new population. 
 For encoding ANN parameters as individuals, 
real-value encoding is used. All weights and biases 
are recorded into the array of fixed size I: 

,w bI N N   

where Nw is the total amount of all weights in 
network and Nb is the total amount of biases. 
 Crossover is performed in form of binary 
tournament selection. Two potential mate candidates 
are being chosen from the whole set of mates and 
then they are compared based on their fitness value. 
The individuals with higher fitness value is placed 
into mating pool. The process is repeated until the 
mating pool is filled. After that every two 
individuals from the mating pool are crossed with 

probability Pc. Crossover is performed using one-
point method. Crossover point is selected at random 
and all the parameters of parents after this point are 
being swapped. Mutation of individuals is performed 
with probability Pm. During the mutation one 
random weight or bias is replaced with random 
value from a range of allowed values. 
 After the termination of genetic algorithm stage, 
chosen parameters are passed to the next stage. This 
stage is the stage of further tuning the network 
parameters via optimization algorithm. The 
following steps are performed on this stage: 
 1) Create the model for ANNs, using chosen 
weights and biases from previous stage. 
 2) Train neural networks until termination 
condition is reached. 
 3) Evaluate the performance of networks by 
making prediction on test set. 

V. RESULTS OF RESEARCH 
Evaluation of performance has been performed on 

the task of classifying images of clothes. ANNs were 
trained on the Fashion-MNIST dataset that consists 
of 60000 learning examples and 10000 test 
examples. Each example is represented in form of 
grayscale image 28x28 pixels and can belong to one 
of ten classes (T-shirt, pants, sweeter, dress, cloak, 
sandals, shirt, sneakers, bag or ankle boots). 

Learning set has been divided into two groups: 
training set (80%, 48000 images) which was used by 
optimization algorithms for adjusting parameters, 
and validation set (20%, 12000 images) for 
calculating loss and accuracy. Training would stop 
on achieving 85% accuracy, after which the number 
of training epochs would be calculated for 
comparing performance. 

Testing has been performed on fully-connected 
feedforward network that had 784 neurons in input 
layer, two hidden layers with 512 neurons in each 
and output layer with 10 neurons. 

Each algorithm has been tested ten times, then the 
average amount of epochs required to achieve 85% 
accuracy has been calculated. The results of 
comparison are presented in the Table I. 

Efficiency of using two-level algorithm in 
comparison with using steepest descent or another 
gradient-based optimization algorithm is presented in 
Table II. 

The following genetic algorithm settings has been 
used: population size – 25 individuals, achieve size – 
25 individuals, amount of iterations – 10, crossover 
probability – 80%, mutation probability – 20%. 

The following parameters of optimization 
algorithms has been used: method of steepest 
descent, Adagrad, RMSProp and Adam were used 
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with learning rate of 0.01, Nesterov’s accelerated 
gradient has been used with learning rate of 0.01 and 
momentum rate of 0.9, Adam optimizer has been 
used with learning rate set to 1. These settings have 
been chosen experimentally in order to increase the 
efficiency of the algorithms. 

TABLE I. COMPARISON OF REQUIRED EPOCH 
AMOUNT 

Optimization 
algorithm 

Epoch amount 
Optimizer only Two-level system 

Steepest 
descent 

3666.0 2876.0 

Nesterov’s 
accelerated 
gradient 

1732.5 1425.5 

Adagrad 1257.0 1037.0 
RMSProp 309.0 295.2 
Adadelta 203.2 183.4 
Adam 52.7 48.7 

TABLE II. COMPARISON OF EFFICIENCY INCREASE 

Optimization 
algorithm 

Increase in efficiency of two-
level algorithm, % 

In comparison 
with steepest 

descent 

In comparison 
with one-level 
optimization 

algorithm 
Steepest descent – 27.47 

Nesterov’s 
accelerated 
gradient 

157.17 21.54 

Adagrad 253.52 21.21 
RMSProp 1141.87 4.68 
Adadelta 1898.91 10.79 
Adam 7427.72 8.21 

VI. CONCLUSIONS 
The paper deals with the problem of tuning 

parameters of ANN in order to minimize the error   
function of network. A new two-level optimization 
algorithm for optimizing weights and biases of ANN 
is proposed, which consists of genetic algorithm on 
the first stage and gradient-based optimization 
algorithm on the second stage. It is shown that the 
usage of two-level system decreases the number of 
epochs required to achieve desired level of accuracy 
and is more effective than gradient-based 
optimization algorithms. 
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О. І. Чумаченко, С. В. Шимков, А. T. Кот. Дворівнева система налаштування параметрів штучних 
нейронних мереж 
Статтю присвячено процесу коригування вагових коефіцієнтів та коефіцієнтів зсуву штучних нейронних мереж 
прямого розповсюдження під час їх навчання. Запропоновано новий алгоритм для налаштування параметрів 
штучних нейронних мереж для подолання недоліків існуючих оптимізаційних алгоритмів та покращення 
процесу навчання нейронних мереж. Запропонований алгоритм поєднує переваги генетичного алгоритму та 
градієнтного алгоритму оптимізації з метою підвищення швидкості навчання штучних нейронних мереж та 
покращення точності передбачення мережі. Результати тренування штучних нейронних мереж для задачі 
класифікації порівнюються з різними градієнтними алгоритмами оптимізації. 
Ключові слова: нейронні мережі; налаштування параметрів; навчання; оптимізація; генетичні алгоритми. 
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О. И. Чумаченко, С. В. Шимков. А. Т. Кот. Двухуровневая система настройки параметров искусственных 
нейронных сетей 
Статья посвящена процессу корректировки весовых коэффициентов и коэффициентов смещения искусственных 
нейронных сетей прямого распространения во время их обучения. Предложен новый алгоритм для настройки 
параметров искусственных нейронных сетей для преодоления недостатков существующих оптимизационных 
алгоритмов и улучшения процесса обучения нейронных сетей. Предложенный алгоритм сочетает преимущества 
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