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Abstract—The paper deals with the application of classical orthogonal Jacobi and Chebyshev—Lagerra
polynomials to solving digital information processing problems and solving Volterra convolution integral
equations, used to solve the problem of remote sensing of the Earth and the problem of identification of
natural objects. The presence of two free parameters in Jacobi polynomials satisfies the conditions under
which the problem of approximation of signals is solved, and the use of Chebyshev—Lagerra polynomials
avoids the sampling procedures for solving Voltaire type integral equations.
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I. INTRODUCTION

The solution of a number of important scientific
and applied problems of the theory of digital
information processing, mass transfer is based on the
effectiveness of existing analytical and numerical
methods of solving the corresponding problems and
processing of real experimental data taking into
account a priori information.

One of the promising approaches to solving the
formulated problems is the use of spectral methods.
In computational experiments, these methods have a
number of advantages that are associated with the
parametric (symbolic) solution of problems at its
various stages. These solutions allow us to
investigate the effect of physical process parameters
on its flow and to study the stability of the solution
of relatively small perturbations of the input data. In
cases where a symbolic solution to the problem fails,
you can construct a solution in the basis of the so-
called structural elements.

Structural elements are understood to mean
functions that, with the precision of a normalizing
factor, are given in a functional basis by a finite set
of integers or rational numbers. This class of
elements includes, for example, classical orthogonal
polynomials, each of which has integer coefficients.
Using the basis of structural elements together with
the ability to find the values of the images, in turn,
allows you to organize the computational process of
solving the problem with guaranteed accuracy. In
this case, computation with guaranteed accuracy
refers to the organization of the computational
process, in which at all intermediate stages errors of
machine (hardware) implementation of arithmetic
operations in such an order that ensures the accuracy
of the final result are eliminated. According to D.K.
Fadeev [1], such a numerical method of solving a
problem is called regular.

The numerical finding of the solution of the
problem with the guaranteed accuracy of
calculations has, in general, only the errors of the
method. In these cases, when it is not possible to
organize the calculations with guaranteed accuracy,
there are additional complications associated with
the accumulation of machine errors.

The essence of spectral methods for solving
problems is to represent known functions and sought
solutions by orthogonal series and to build
algorithms for calculating the coefficients of these
series (generalized spectra) [2].

Comparative analysis of the spectral methods in
the Fourier, Haar, and Walsh bases revealed that
often not all the criteria relating to the desired
solutions are satisfied. Therefore, the spectral
methods in other orthogonal bases - Jacobi,
Chebyshev—Lagerra, Hermite, etc. [2].

The purpose of this work is to build a technique
for using classical orthogonal polynomials to solve
applied  problems, including problems of
identification, multiplicative noise filtering, solving
integrodifferential equations..

II. USE OF JACOBI POLYNOMIALS IN REMOTE
SENSING OF VEGETATION

Remote spectrometric surveys are effectively
used to detect certain deviations in the spectra of
reflection from their background values [2] — [5], in
particular of plants. areas of definition.

1) To illustrate identification problems, consider
the use of Jacobi polynomials in remote sensing of
vegetation, which makes it possible to map
vegetation sections with anomalous spectral
characteristics, knowing the data of ground-based
calibration works [2], [3]. To do this, we
approximate the reflected signal by the Nth partial
sum of the Fourier—Jacobi series [2]
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Since signal values are known mainly in discrete

points when processing information, it is advisable to
use formulas to calculate unknown coefficients f .
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Plant contamination with nitrates leads to the
perturbation of the reflected spectrum at
wavelengths from 450 nm to 650 nm [2], [3], and
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Fig. 1. The amount of nitrate that is determined after

calibration for deviation of chemical samples

Through a computational experiment, values o
are B chosen so that equality occurs x, =x, =x,,.

¢) The values of the background f, and
anomalous f, reflected spectra and their difference
A = fo(x,) = fy(x,) are
maximum point found. Table I shows the values x,,
and Af for different values o and . The number I

calculated at the

the amount of nitrates can be determined after
calibration by chemical samples deviation
A = frmax (%) = fumax (X,,) @t the maximum point
x=x, (Fig. 1). Here f, and f, are the values of
the background and anomalous reflected spectra,
respectively. Note that in this case, the fact that the
points of maximum anomalous and background
spectra must coincide is important. Practice shows
that failure to comply with this requirement leads to
a significant inaccuracy in the determination of
perturbation Af. The presence of two free

parameters in Jacobi polynomials allows to solve
this problem.
The algorithm for determining the value Af will

be as follows:

a) According to formula (2) and the values of the
background f,(2,) and anomalous f,(},) spectra,

the Fourier—Jacobi coefficients are calculated f,

and £, (n=0,NV).
b) By setting the values of o and 3, there are
points of maxima x,, and x,, for the background

and anomalous reflected spectra, as the solution of
equations f'(x)=0 in the interval 450-650 nm, or

%V“ ﬁ{( B—o—(a+P)x) B*P) (x) +2n+a+[3((a—[3+(2n+ a+B)x) B (x) ~2(n -+ )+ B) 24P (x))} =0.

corresponds to the case where before the sum in
equality (1) the factor is one and the digit II —

o(x)=(1-x)"(1+ x)B .
TABLE L. THE PERTURBATIONS OF THE
BACKGROUND SPECTRUM Af OF THE REFLECTION

OF PLANTS AT THE MAXIMUM x,, AT DIFFERENT VALUES
OF PARAMETERS o AND 3

p -0.6 —0.28 0.04 0.36 0.68
o x, |A| x, |&f] x, |AF| x, |A| x, |A
—0.5| I [577.6[3.84(578.1|3.89|578.5[3.70|578.9[3.54|579.3]3.43

II |543.8|6.18|596.9(3.53|543.76.33|545.6(6.58|533.09.87
0.0 | T [577.44.17)577.93.97\578.33.77|578.7(3.59|579.1[3.46)
II |544.4/6.47)597.4/0.43|544.216.42|545.3|6.58|548.86.85
1.0 | I [577.04.32|577.5{4.16|577.93.98|578.3|3.80[578.7]3.64
II [570.9/7.16569.8|6.73(529.55.98|529.2(5.90|529.1|5.84

The results in the table show that for each «
there are such values [ at which Af it is constant.

The perturbation constant of the background
spectrum Af is the criterion for selecting the
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parameters o and [ under which the plant

spectrometry data are processed.

III. USE OF JACOBI POLYNOMIALS IN EPR
DOSIMETRY

The method described above was used in object
identification tasks by processing discrete data in
electron paramagnetic resonance dosimetry (EPR
dosimetry). The task is to find the maximum
differences in the intensity of the reflected rays and
to compare them with the reference data according
to the given discrete data. The results of the
numerical experiment are presented in Table II and
Fig. 2, where the measured data (their number 4096)
is their approximation according to the algorithm
described above, the maximum and minimum values
at given intervals are calculated and the difference
between the maximum and minimum values is
found.
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Fig. 2. The results of the numerical experiment are
presented

TABLE II. THE VALUES OF THE BEGINNING AND END OF
THE INTERVALS, WHICH ARE THE EXTREME VALUES OF THE
SIGNAL, THE CORRESPONDING VALUES OF THE ARGUMENTS
AND THE DIFFERENCE BETWEEN THE MAXIMUM AND
MINIMUM VALUES

Ei‘:?gm- End Value QZ%:'
max 3410.75 3411.41 1166.763 | 3411.01
max 3416.29 3417.05 5924.285 | 3416.69
min 3377.15 3386.9 -1470.92 | 3381.69
min 3390 3396.02 -927.662 | 3390.38
min 3420.44 3423.95 -6276.58 | 3421.32
Signal
difference 2637.68
Signal
difference 2094.425
Signal
difference 12200.86

IV. THE CHEBYSHEV-LAGERRA POLYNOMIALS
AND THEIR GENERALIZATIONS

Jacobi polynomials are useful when signals are
defined in a finite region. However, there is a certain
class of signals whose arguments are the time that is

defined at a half-boundary interval. For this class of
signals it is advisable to use Chebyshev—Lagerra

polynomials L (), A >—1 that are orthogonal to
t €[0,) . The distribution of a function in a series
by polynomials is [2], [6]

f(0= Z X s L, (0. )

In this case, they are calculated by the formula

fu=[ e L) f @)t )

The Chebyshev—Lagerra polynomials have the
significant disadvantage that as their order increases,
they grow exponentially with time. One way out of
this provision is to introduce an additional factor that
does not always allow you to extend the fast
convergence gap. More appropriate is the use of
modified Chebyshev—Lagerra polynomials.

Let v(v<0,v#0) and p(0<p<ow) — some
steel. We define the modified Chebyshev—Lagerra
transform by the relation [2]

fuva) = [0 L (W) f(Dde. ()

The original transformation (5) is given by the
formula

10=3 Oy,

The properties of integral transformations (4) and
(6) are derived based on the relations between the
corresponding orthogonal polynomials.

w (L), (6)

V. INVERSION OF A ONE-DIMENSIONAL VOLTERRA
CONVOLUTION

A large number of applied problems (in
particular, information processing, lidar equations,
derivatives and fractional order integrals, etc.) are
reduced to convolution integral equations. The main
approaches to numerically solving integral equations
of the first type of convolution type are to use
Tikhonov type regularization algorithms or to
approximate the original equation directly.

The use of Tikhonov-type algorithms results in
the loss of voltarosity, which significantly reduces
the possibility of restoring the desired functions for
the considered areas of their application and the
application of small grid steps.

The main disadvantage of the second direction is
the lack of accounting for the instability of the
numerical solution to the errors of the input
information, which leads the solution of the
perturbed equation beyond the set of correctness.
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Integral transformations, the kernels of which are
Chebyshev—Lagerra polynomials, allow us to
construct effective methods for solving convolution-
type integral equations [7] —[9].

Consider the following integral equations

of () +uf] K(t-7) f(D)de=p(r), ()

k[, k(=) f (@ d=y(0). ®)

Here o,p are some steels; f(7) is the desired

function; k(¢) is the kernel of the equation. We
assume that the functions in integral equations (7)
and (8) satisfy the conditions that allow them to be
represented by Fourier—Lagerraire series of type (3).
Recovering the desired solution is determined by the
unknown coefficients f,, .

If we look for the solution of equation (7) as (3)
at L =0, then the unknown coefficients f, of the
solution are calculated by the formula

1 n
- > kLol O
2 (5 k) [yn u; f} ©)

o+u

Here, k, and f, are the Fourier-Lagerra
coefficients of functions k(7) and f(¢). Since the
coefficients k, and y, are known, the formula (9)
determines the Lagerra spectrum of an unknown
function f(¢).

A. Equation Solution

Let the functions k(¢) and f(¢#) be represented
by rows by polynomials L*(t), A, >-1,
Lf/ (1), A, >-1, respectively, and the right part (8)
is filed nearby

and

W(t)=t" Z Lo ph ), d=h, 40, 41,
n=0 n
Then the unknown coefficients f, are calculated
by the formula

1 1 n—l
fn:_ [_yn - kn—m f;nJ
ko [ ;)
The main advantage of this method is that the

sampling procedure is eliminated because the
integral convolution becomes a series convolution.

(10)

B. Modification of the constructed scheme
Since the input is a value, it is advisable to
modify the formulas so that the known values y(z;)

directly obtain the value of the desired solution at

certain points. For this purpose, we write formula
(10) in the form

K, Fy=Y,, (11)
where
ko 0 0 Jo Yo
k k 0 k
Ky= 1 0 L Fy= Uy, = B4

Then the unknown coefficients f, are from the
solution of the matrix equation (11), 1i.e.
F,=K,'Y,, where K,' is the matrix inverted to

N N>
K, ,or f":Z Yz, n=0,N-L.
i=0
Here z,; are the elements of the matrix K'. If

N — to be written as a partial sum of the Fourier—
Lagerrau series

fN<r>=Z (),

=ty —

S ' (),
~ F(l’l+}u ) n+l,m+1 m()

then the values of the function f(7) in points
t,, k= I,_K, are calculated by the formula

S@)) (@) m(@) My (8D ) [ Yo
J@&) | | ) n() Mo () || 0 '
S@) () M (&) Mo () ) 1

Note that values n,(tj) can be calculated with
the required accuracy and stored in a database.

VI. REDUCTION OF THE CONVOLUTION IN THE
LAGERRA BASIS FUNCTION

The exponential growth of Chebyshev—Lagerra
polynomials can also be solved by applying the
spectral decomposition in the Lagerra basis function

o, ()= L (1), A>—1,

which are orthogonal to the interval [0,00) and

retain all the basic properties of the Chebyshev—
Lagerra polynomials. When n —> o and t—

Lagerra functions ¢, () go to zero.
Let the function f(z) be approximated by a
partial sum of the series

~

f(z):z”e”i o, (t]h), (12)

n=0

s|
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where y(]y|< o) and A(0<h <o) are some steels;
r, is the normalizing factor. Then the formulas are
used to calculate the coefficients

L= e ri) o,

X, e ()
2yl 2, (h,).
> N T DgentF P

The last formula A

Py (T)

Since the Chebyshev—Lagerra basis is effective
for solving convolution-type equations, given the
relation  between Laguerre functions and
polynomials, one should expect that similar results
hold for Laguerre functions.

Theorem. Let functions k(z), o(¢) and f(¢) be
represented by rows of type (12). Then the unknown
coefficients f, of the desired solution are calculated

is the root of the function

by the formula
1 n—l1
fn = {(pn _z kn—m fm}
k() m=0

where k, and ¢, are the coefficients of the
orthogonal series of functions k(¢) and ¢(¢z) the

basis of the Laguerre functions.
This method also applies to the solution of the
following convolution-type integral equations:

of () +uf k(t=1) f(0)di=p(0),
d ¢t
oaf (O)+n— [ k(t=7) f(t)di=0(2),
dt 7o
where a and p some are constant. In these cases,

the Fourier—Lagerra coefficients of the unknown
functions f(¢) will be calculated by the formulas

n—1
{(pn _l’l' z kn—m fm}
m=0

n—1
0, -1 k., f}
m=0

=

o+ pk,
e 1
"o+ pu(k, —k(0))

VII. CONCLUSIONS

The use of the spectral method of solving
convolution-type equations in the basis of the
Chebyshev—Lagerra  polynomials  avoids  the
sampling procedure. This solves the problem of the
instability of the numerical solution to the errors of
the input information, which brings the solution of
the perturbed equation beyond the bounds of the
correctness set.

On the basis of the Chebyshev—Lagerra
polynomials, similar results were obtained for the
reduction of a semi-boundless convolution and the
method for solving two-dimensional convolution-
type integral equations.

Spectral methods can be effectively used to solve
lidar equations [10] — [13]. It is known that the vast
majority of atmospheric optics problems can be
reduced to Fredholm first- or second-order integral
equations. In relation to the Fredholm integral
equation of the first kind, which is the Laplace
transform, an adaptive algorithm of its inversion is
constructed in the basis of the Jacobi polynomials
[2]. Note that in this case the kernel of an integral
equation is an exponential function. However, this
approach can be extended to the case of an arbitrary
kernel of an integral equation.

The Chebyshev—Lagerra polynomials have also
been successfully used to solve differential
equations in partial fractional derivatives [14], [15].
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A. I. Isaauiio. OpToroHajibHi MHOTO4JIeHH B 3aJa4ax 00po0aeHHs: nugposoi ingopmanii

B po6oTti po3riisiHyTO MUTaHHS 3aCTOCYBaHHS KJIACHYHHUX OPTOrOHaJIbHMX MHOrowieHiB Slko6i ta YebmmeBa—Jlareppa no
PO3B’s3yBaHHs 3aqa4 00poOieHHs mudpoBoi iHopmalii Ta po3B’s3yBaHHS iHTErpalbHUX PIBHSAHb Bosbreppa THITy
3TOPTKH, BUKOPUCTAHO X ISl BUPINIEHHS 3a/1a4i AUCTaHIIITHOrO 30H/IyBaHHs 3eMJIi Ta 337adi igeHTudikamii npupoHux
00’exTiB. HasiBHICTH JBOX BIJBHHX MapaMerpiB y MHorowieHax $Iko0i J0O3BOJsE 3aJ0BOJIBHUTH YMOBH, 32 SIKHX
pO3B’s3aHa 3a/iaya anpoOKCHMAlli CHTHaNiB, a 3aCTOCYBaHHS MHorowleHiB YeOumieBa—Jlareppa m03BONAE YHUKHYTH
MIPOLIEAYPH JUCKPETH3allii PU po3B’s3yBaHHI IHTErpajJbHUX PIBHSIHb BONBTEPiBCHKOTrO TUITY.

Karo4ogi ciioBa: opToroHaibHi MHOTOWIEHH; CIIEKTPAIbHI METOIU; 0OpOOIeHHS AaHMX, 3a1a4l iqeHTrikarii.
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A. 1. Ilsannoe. OpToroHanabHbie MHOTOYJIeHBI B 3a7a4ax o0padoTkn nuugposoii nagopmanmun

B pabGore paccMoTpeHBI BOMPOCH NMPUMEHEHHs KJIACCHYECKHX OpPTOTrOHAJbHBIX MHOrouwieHOB Slkoou u YeOblmeBa—
Jlareppa mist pemienus 3a1a4 00padoTKK 1MpPOBOK HHPOPMAIMHY U PEIICHNS] MHTETPallbHBIX YpaBHeHUH BonbTeppa Trmna
CBEPTKH, WCIIONB30BAaHHUE WX YIS PEIICHUS 33/1au¥l JMCTAHIMOHHOTO 30HAMPOBAHMS 3€MIIH M 3a/laull UICHTH()UKAIIN
MIPUPOJHBIX 00bekToB. Hammume nByX CBOOOAHBIX MapaMeTpoB B MHOTOWIEHaX SIKOOHM IO3BOJSIET YIOBJIETBOPUTH
YCIIOBUSI, IPH KOTOPBIX pelllieHa 3a/iaya anmpoKCUMallii CHTHAJIOB, a NMpUMEHeHHe MHorowieHoB YeOwmieBa—Jlareppa
MO3BOJISIET M30EXKATh MTPOLIEAYPhl AUCKPETU3ALNH TIPH PELIEHHN HHTETPAbHBIX YPaBHEHHUH BOJITEPOBCKHUX THIIA.
KaroueBrble c10Ba: opTOroHAIBHBIE MHOTOYJIEHBI; CIIEKTPAJIBHBIE METO/IbI; 00paboTKa JaHHBIX, 33/1a41 WICHTU(QHKALINHL.
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