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Abstract—In this paper the problem of learning the deep believe neural network with help of a restricted
Boltzmann machine and the choose of an optimal algorithm for its training is considered. Different
algorithms of restricted Boltzmann machine training, which are used for the pre-training of deep believe
neural network, are considered, in order to increase the efficiency of this network and further solve the
problem of structural-parametric synthesis of deep believe neural network. This task represents the task
of justifying the necessity of optimal choice of the restricted Boltzmann machine adjustment algorithm for
improving the quality of training of the neural network. To solve this problem, it is suggested to create an
automated adjustment system of restricted Boltzmann machine, which choose the optimal training

algorithm for this neural network.

Index Terms—Deep Believe Network; Restricted Boltzmann Machine; Contrastive Divergence;
Persistent Contrastive Divergence; Parallel Tempering.

I. INTRODUCTION

Today, artificial neural networks are used not
only in the industry, but also in almost all spheres of
human life. They come into practice wherever it is
necessary to solve the tasks of forecasting,
classification or control.

Such impressive success is determined by several
reasons:

— rich opportunities: neural networks is an
extremely powerful simulation method that allows to
reproduce extremely complex dependencies;

— easy to use.

During the period of neural networks existence,
(from the middle of the XX century), many types of
neural networks were created. In this paper, a deep
believe neural network (DBN) with previous
training on the basis of a restricted Boltzmann
machine (RBM) is considered..

However, despite the high popularity of artificial
neural networks, there is an important problem with
their use, namely, the choice of optimal training
algorithm. In this article, it is considered different
learning methods of RBM. It is necessary to admit
that the choice of the method of training changes the
efficiency of the neural network of deep learning.
Therefore, finding an optimal algorithm for training
artificial neural network is a very important task of
its optimizing.

II. PROBLEM STATEMENT

A deep believe neural network is a multi-layer

perceptron with two or more hidden layers of

neurons in which neurons in the middle of each layer
are not interconnected, but bound between neurons

of neighboring layers. Thanks to the multilayered
architecture, they allow you to process and analyze a
large amount of data, as well as simulate cognitive
processes in various areas.

Historically, the first appeared deep believe
neural networks and deep perceptron, which in the
general case are multilayered perceptron with more
than two hidden layers [1]. The main difference
between the deep neural network of deep perceptron
is that the deep believe neural network in the general
case is not a feed forward neural network. Until
2006, in the scientific environment, the paradigm
was a priority, that the multilayer perceptron with
one, maximum of two hidden layers is more
effective for the nonlinear transformation of the
input space of images into output compared with the
perceptron with a large number of hidden layers. It
was considered that it makes no sense to use
perceptron with more than two hidden layers. This
paradigm was based on the theorem that a
perceptron with one hidden layer is a universal
approximator [1].

The second aspect of this problem is that all
attempts to apply a back propagation algorithm to
study a perceptron with three or more hidden layers
did not lead to an improvement in the solution of
various problems. This is due to the fact that the back
propagation algorithm is ineffective for learning
perceptrons with three or more hidden layers when
used the sigmoid activation function due to the
problem of vanishing gradient problem [1].

In article [2] proposed proposed an “greedy
layer-wise” algorithm, which became an effective
means of learning deep neural networks. It has been
shown that the deep neural network has a high
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efficiency of nonlinear transformation and
representation of data in comparison with the
traditional perceptron. As a result, the first hidden
layer allocates a low-level space of signs of input
data, the second layer is a detector of the space of
signs of a higher level of abstraction, etc. [3], [1].

As already noted, the deep neural network
contains a lot of hidden layers of neuronal elements
and implements a deep hierarchical transformation
of the input space of images.

For this neural network (Fig. 1), it is used the

sample Jz{(Rj,Yj)},jzl,...,P pairs type of
“attribute-value”, where R, Y; is the input and

output vectors neural network respectively.

It is necessary to choose an optimal algorithm of
RBM training as a criterion it is proposed a
generalized error criterion.
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Fig. 1. Deep Believe Network

The output value of the jth neuron of the kth layer
is determined as follows:

yi=F(s%).
S§=> whyi + T3,
i=1

where F is the activation function of the neural
element; S is the weighted sum of the jth neuron of

the k-layer; wj is the weighting factor between the
ith neuron (k—1)th layer and the jth neuron of the kth
layer; 7% is the threshold value of the jth neuron of

the kth layer.
For the first layer y =x,. In the matrix form,
the output vector of the k-th layer:

Yk :F(Sk):F(WkYk—l_i_Tk)’

where W is the matrix of weight coefficients; y*' is

the output vector (k—1)th layer; 7* is the vector of
the threshold values of the &-th layer neurons [1].

The activation function determines the output
value of the neuron depending on the result of the
weighted sum of the inputs and the threshold value.

The first type of the activation functions is step
function. If the value of Y is greater than a certain
threshold value, we consider the neuron activated.
Otherwise, we say that the neuron is inactive. Such a
scheme should work, but first let's formalize it:

1. Function F' = activated if Y > bias, otherwise
not.

2. Another way: F = 1, if Y > bias, otherwise
A=0.

Such a function is shown in the Fig. 2.
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Fig. 2. Step activation function

The second type is linear activation function

(Fig. 3).
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Fig. 3. Linear activation function

The linear function is a straight line and is
proportional to the input (that is, the weighted sum
of this neuron) F =cx.

Next on our list is the activation function ReLu
F(x)=max(0,x).

Using the definition, it becomes clear that ReLu
returns the value of x if x is positive, and 0 otherwise

(Fig. 4).
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Fig. 4. ReLu activation function

In most cases, the ReLu works as a good
approximator.

If a deep neural network is used to classify
images, the output values of the network are often
determined based on the softmax activation function,
and also called sigmoid (Fig. 5).
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Fig. 5. Softmax activation function
III. TOPOLOGY OF RBM

The restricted Boltzmann machine consists of
two layers of stochastic binary neural elements,
which are interconnected by bidirectional symmetric
connections (Fig. 6). The input layer of the neural
elements is called visible (layer i), and the second
layer is hidden (layer ;). A deep neural network can
be represented as a collection of restricted
Boltzmann machines. A restricted Boltzmann
machine can approximate (generate) any discrete
distribution if sufficient neurons of the hidden layer
are used [14].

i th
layer

Inputs

Fig. 6. Restricted Boltzmann Machine

This network is a stochastic neural network in
which the states of visible and hidden neurons
change in accordance with the probabilistic version
of the sigmoid activation function:

p(y]x)= Sj=iw,-,-x,-+T,-. (1)

1+e%’
The states of visible and hidden neural elements
are made independent:

plsly)=TTP(sly).
PO =T1P( ),

Thus, the states of all the neural elements of a
RBM are determined through the probability
distribution. In restricted Boltzmann machine,
neurons of the hidden layer are feature detectors that
determine the patterns of input data. The main task
of training is to reproduce the distribution of input
data based on the states of the neurons of the hidden
layer as accurately as possible. This is equivalent to
maximizing the likelihood function by modifying
the synaptic connections of the neural network.

Despite the architectural differences of deep
neural networks, the principles of their learning are
identical. Therefore, we consider the basic concepts
of learning such networks on the example of a RBM.
For each we will calculate generalized error

k

1 2

E==2.(v=y), 3)
i=1

where k is the number of elements of sample; y is the

given output values; ' are expected output values.

IV. REVIEW OF TRAINING ALGORITHMS

In this section, algorithms for the training of a
RBM will be considered. All common training
algorithms for RBMs approximate the log-likelihood
gradient given some data and perform gradient
ascent on these approximations.

A. Contrastive Divergence

Obtaining unbiased estimates of log-likelihood
gradient using Markov Chain Monte Carlo (MCMC)
methods typically requires many sampling steps.
However, recently it was shown that estimates
obtained after running the chain for just a few steps
can be sufficient for model training [4]. This leads to
contrastive divergence (CD) learning, which has
become a standard way to train RBMs [2], [4] — [7].

The idea of k-step contrastive divergence
learning (CD-k) is quite simple: instead of
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approximating the second term in the log-likelihood
gradient by a sample from the RBM-distribution
(which would require running a Markov chain until
the stationary distribution is reached), a Gibbs chain
is run for only &-steps (and usually £ = 1). The Gibbs
chain is initialized with a training sample v'* of the
training set and yields the sample v after & steps.

Each step ¢ consists of sampling 4 from p(#®)

and subsequently sampling v/ from p(v|a®).
The gradient, with respect to 0 of the log-likelihood
for one training pattern v'” is then approximated by

6E(v(0),h)

en 02) o) g
6E(v(k),h)
+ Zh:p(h‘v(k) )

oo

This algorithm was invented by Professor Hinton
in 2002, and is distinguished by its simplicity. The
main idea is that mathematical expectations are
replaced by quite definite values. This approximation
is based on Gibbs sampling. The CD-k process looks
like this (Fig. 7):

— the state of visible neurons equates to the
input image;

— the probabilities of states of the hidden layer
are displayed;

— for each neuron of the latent layer, the
condition "1" is brought in with the probability equal
to its current state;

— the probabilities of the visible layer are
derived based on the latent;

— if the current iteration is less than k, then
return to step 2;

— the probabilities of states of the hidden layer
are displayed.
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Fig. 7. Schematic application of CD-k
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The longer do sampling, the more accurate our
gradient will be. At the same time, the professor
asserts that even for CD-1 (only one iteration of
sampling) a quite good result is obtained. The first
term is called the positive phase, and the second
with the minus sign is called the negative phase.

In the Gibbs sampling, the first terms in the
expressions for the gradient characterize the data
distribution at time ¢ = 0, and the second is the

reconstructed or generated state of the state at time
t = k. Proceeding from this, the CD-k procedure can
be represented as follows:

x(O) —)y(O) —)x(l) —)y(l) —. ..—)x(k) —)y(k).

As a result, can got the following rules for
training the RBM network. In the case of the use of
CD-1 £ = 1 and taking into account that in
accordance with the method of gradient descent

olnP (x)

5W@/(t) ’

wi(1+1)=w;(¢)+a for  consistent

training have:

w4+ D= (1) +a(x,(0),(0) -~ xi(k) v (k).
r.(t+1)=7,(1)+ a(x(0)x(1),
T,(t+1)=71,(t)+ oc(yj(o)yj(l))-

Similarly, for the CD-£ algorithm:
wi(t+1)=wy(1) + a(x(0),(0) ~ xi(k) y, (K)).
T(t+1)=T.(1) + o x,(0) = x.(k)),
7,(t+1)=1,(t)+a(v,(0)-y (K)).

In the case of group learning and CD-k
w,-j(t+1 sz +OLZ(x,

a0 ),

+ai( ().

From the last expressions it can be seen that the
rules of training a restricted Boltzmann machine
minimize the difference between the original data
and the results generated by the model. The values
generated by the model are obtained by Gibbs
sampling.

T,(t+1)=

T,(t+1)=

B. Persistent Contrastive Divergence

The CD-1 is fast, has a low dispersion and is a
reasonable approximation to the likelihood gradient,
but it is still significantly different from the
probability gradient when the mixing speed is low.
Generally speaking, CD-k for greater n is better than
CD-1 if there is enough time to work [8].

Although CD-1 is not a very good approximation
to maximum likelihood learning, this does not seem
to matter when an RBM is being learned in order to
provide hidden features for training a higher-level
RBM. CD-1 ensures that the hidden features retain
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most of the information in the data vector and it is
not necessarily a good idea to use a form of CD that
is a closer approximation to maximum likelihood but
is worse at retaining the information in the data
vector. If, however, the aim is to learn an RBM that
is a good density or joint-density model, CD-1 is far
from optimal.

At the beginning of learning, the weights are
small and mixing is fast so CD-1 provides a good
approximation to maximum likelihood. As the
weights grow, the mixing gets worse and it makes
sense to gradually increase the n in CD-k. When n is
increased, the difference of pairwise statistics that is
used for learning will increase so it may be
necessary to reduce the learning rate.

Method, called Persistent Contrastive Divergence
(PCD) solves the sampling with a related method,
only that the negative particle is not sampled from
the positive particle, but rather from the negative
particle from the last data point [8].

The idea of persistent contrastive divergence
(PCD) [8] is described in [9] for log-likelihood
maximization of general MRFs (Markov Random
Fields) and is applied to RBMs in [8]. The persistent
contrastive divergence approximation is obtained
from the CD approximation (4) by replacing the
sample v* by a sample from a Gibbs chain that is
independent of the sample v” of the training
distribution. The algorithm corresponds to standard
CD learning without reinitializing the visible units of
the Markov chain with a training sample each time
we want to draw a sample v* approximately from
the RBM distribution. Instead one keeps “persistent”
chains which are run for £ Gibbs steps after each
parameter update (i.e., the initial state of the current
Gibbs chain is equal to v* from the previous update
step). The fundamental idea underlying PCD is that
one could assume that the chains stay close to the
stationary distribution if the learning rate is
sufficiently small and thus the model changes only
slightly between parameter updates [8], [9]. The
number of persistent chains used for sampling (or
the number of samples used to approximate the
second term of gradient) is a hyper parameter of the
algorithm. In the canonical form, there exists one
Markov chain per training example in a batch.

The persistent contrastive divergence algorithm
was further refined in a variant called fast persistent
contrastive divergence (FPCD) [10]. Fast PCD tries
to reach a faster mixing of the Gibbs chain by

introducing additional parameters w,jf , bjf , jf (for
i=1,...,nandj=1, , m) referred to as the fast
parameters. This new set of parameters is only used
for sampling and not in the model itself. When

calculating the conditional distributions for Gibbs
sampling, the regular parameters are replaced by the
sum of the regular and the fast parameters, i.e.,
Gibbs sampling is based on the probabilities

p(H .—1|v)—51g[i(wy+wy) +(c +c,)] (5)

J=1

and

B(7, =1h)=Sig(i(wl-j+w§')hi+(bj+b?)} (©)

i=l1

instead of the conditional probabilities given by (1)
and (2). The learning update rule for the fast
parameters is the same as the one for the regular
parameters, but with an independent, large learning
rate leading to faster changes as well as a large weight
decay parameter. Weight decay can also be used for
the regular parameters, but it has been suggested that
regularizing just the fast weights is sufficient [10].
Neither PCD nor FPCD seem to increase the mixing
rate (or decrease the bias of the approximation)
sufficiently to avoid the divergence problem, as can
be seen in the empirical analysis in [11].

C. Parallel Tempering

However, the study of contrast divergence is
considered an effective way to study RBMs, it has a
drawback due to the biased approach in the learning
curve. This chapter proposes using the advanced
Monte Carlo method, which is called Parallel
Tempering (PT), and experimentally shows that it
works effectively [12].

The problem that was not solved by either the
Gibbs sampling or the CD training is that the
samples formed during the negative phase are not
inclined to explain the whole state of the state. Thus,
this section proposes to use another improved
version of the Monte Carlo Markov Chain sampling
method, called Parallel Tempering (PT).

The introduction of the PT sample occurs in the
1980s, when Swendsen and Wang introduced the
Monte Carlo replica and applied it to the Ising model
[15], which is equivalent to a Boltzmann machine
with visible neurons. Simulation of the replica
Monte Carlo suggested modeling several copies of
particles  (replicas) at different temperatures
simultaneously, rather than simulating them
consistently. Similarly, Geyer later introduced the
use of a parallel MCMC sampling chain based on
the mixing rate of samples through parallel chains to
maximize the likelihood [16].

The basic idea of PT sampling is that samples are
collected from multiple chains of Gibbs sampling
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with different temperatures. The term temperature in
this context means the energy level of the overall
system. The higher the temperature of the chain, the
more likely it is that samples collected with Gibbs
move freely.

For each pair of samples collected from two
different chains, the probability of swapping is
calculated, and the samples vary places according to
the probability. The probability of a swap for a pair
of samples is formulated in accordance with the
Metropolis rule [13]

P (xT Xz )= min[l,—PT' (xrz )PT' (xr' )J,

e B (%) B, (x)

where T7 and T, denote the temperatures of the two
chains, and x; and x; denote samples collected

from two chains.

After each round of sampling and swapping, the
sample at the true temperature 7 = 1 is gathered as
the sample for the iteration. The samples come from

the true distribution, p(v,h|9) in case of RBMs,

assuming that enough iterations are run to diminish
the effect of the initialization.

It must be noted that the Gibbs sampling chain
with the highest temperature (7 = 0) is never multi-
modal such that all the neurons are mutually
independent and likely to be active with probability
1/2. So, the samples from the chain are less prone to
missing some modes. From the chain with the
highest temperature to the lowest temperature,
samples from each chain become more and more
likely to follow the target model distribution. How
PT sampling could being trapped into a single mode
is illustrated in Fig. 8.

Fig. 8. Illustration of how PT sampling could avoid being
trapped in a single mode. The red, purple, and blue curves
and dots indicate distributions and the samples from the
distributions with the high, medium, and cold
temperatures, respectively. Each black line indicates a
single sampling step

This nature of swapping samples between the
different temperatures enables better mixing of
samples from different modes with much less
number of samples than that would have been
required if Gibbs sampling was used.

Parallel tempering sampling in training RBMs
can be simply uses as a replacement of Gibbs
sampling in the negative phase. This method is, from
now on, referred to as PT learning. Due to the
previously mentioned characteristics, it is expected
that the samples collected during the negative phase
would explain the model distribution better, and that
the learning process would be successful even with a
smaller number of samples than those required if
Gibbs sampling is used.

V. PROBLEM SOLUTION

As known, the main task of this work is finding
an optimal algorithm for configuring a restricted
Boltzmann machine. For a comparative example,
three learning algorithms were used: Contrastive
Divergence (CD), Persistent Contrastive Divergence
(PCD), Parallel Tempering (PT).

This section is intended to describe a general
algorithm that, based on criteria such as learning
speed and accuracy of the neural network, determines
the most productive algorithm of RBM training.

The block diagram of how to work an automated
adjustment system of restricted Boltzmann machine
is shown in Fig. 9.

On input of each deep believe neural network,
which consists of a RBM stack and a multilayer
perceptron, is served with a training sample. These
three deep believe neural networks are pre-trained
using RBMs with different learning algorithms,
namely Contrastive Divergence (CD), Persistent
Contrastive Divergence (PCD), Parallel
Tempering (PT).

Then the results of the outputs from the each
multilayer perceptron are recorded in the database
and also for these outputs, the generalized error
criterion is computed. The results of these
calculations arrive at the block of determination
minimum error, where among them the result is
chosen with the minimum value of error.

After these calculations, a block of choice
optimal algorithm is included into the work, where
the results are from three deep believe neural
networks. Based on results from the block of
determination minimum error, the automatic
adjustment system decides which algorithm is
optimal and then outputs the result of the deep
believe neural network with this algorithm.
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Fig. 9. Structural scheme of automated adjustment system of restricted Boltzmann machine

Thus, the adjustment algorithm of deep believe
neural network has the following form:

1. Restricted Boltzmann machine is adjusted
according to the first, second and third algorithms
one by one, for this training sample. As a result,
receive the first, second and third sets of weight
coefficients Wy, W,, Wi.

2. By a result of this training, the main neural
network — perceptron is initialized in sequence,
which involves the determination of the initial
values of RBM weights coefficients for the first,
second and third cases.

3. As a result, using of the back propagation
method, the values of weight coefficients are found
according to the first, second and third algorithms of
the training restricred Boltzmann machine.

4. The value of a generalized error criterion is
found on the test sample for the first, second and
third cases.

5. Based on the obtained values of the
generalized error criterion, the optimal adjustment
algorithm of restricted Boltzmann machine is
chosen.

This is a simple by structure and logic structural
scheme of an automated system for selecting an
optimal algorithm for training a restricted
Boltzmann machine, but also an extremely
capacious one. Because we use up to three deep
believe networks (RBM and MLP) and in addition,
we create additional blocks for calculating the
minimum errors of each algorithm and comparative
blocks.

As an example, are considered the deep believe
neural network (Fig. 10) with the three hidden layers
of the perceptron, for which corresponds three
Boltzmann machines connected sequentially.

Restricted Boltzmann Machines Multilayer perceptron

[ Output
.

Hidden 3 }»*—__ _ i Y

“*-( Hidden n |

RBM n - _,
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. 1

o Y
| Hidden 2 { Hidden 1 \,

RBM 2 I /

: 1
| Visible | / [\ Input )
L b ]
/ . s
I
p \/
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RBM 1 I
| Visible |
\ /
~— L

Fig. 10. Deep believe neural network

The training sample contained 50 examples,
represented as vectors of 250 x 250 dimension and
coordinate values on the segment (—1; 1). The test
sample included an additional 10 examples of the
same dimension. Results of modeling is represented
in Tables I, II, and III.
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TABLE I.

RESULTS OF CD MODELING

Initialized weight coefficients
of RBM

Initialized weight coefficients
of perceptron

Generalized error criterion

[0.258; 0.650; 0.845; 0.254; 0.873]

[0.302; 0.570; 0.900; 0.258; 0.950]

0.0225

TABLE II.

RESULTS OF PCD MODELING

Initialized weight coefficients
of RBM

Initialized weight coefficients
of perceptron

Generalized error criterion

[0.565; 0.841; 0.785; 0.255; 0.720]

[0.570; 0.850; 0.790; 0.258; 0.710]

0.0178

TABLE IIL

RESULTS OF PT MODELING

Initialized weight coefficients
of RBM

Initialized weight coefficients
of perceptron

Generalized error criterion

[0.356; 0.745; 0.552; 0.450; 0.854]

[0.300; 0.654; 0.720; 0.258; 0.957]

0.0365

According to results test sample of generalized
error for three algorithms, the optimal algorithm for

[6] Y. Bengio and O. Delalleau,

“Justifying and

RBM training is a Persistent Contrastive
Divergence. Because it has smaller value of
generalized error than other two algorithms.

VI. CONCLUSION

Creating such an automated adjustment system of
restricted Boltzmann machine allows to choose the
optimal algorithm for its training, based on
performance generalized error criterion of the neural
network. Using this approach will increase the
efficiency of solving tasks with the help of deep
believe neural network and extend its use in the
applied field.
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B. M. Cunernasos, O. P. TodpaHok. ABTOMATH30BaHA CHCTEeMa HAJTAIITYBAaHHSA o0Me:KeHOoI MamnHu boasumana
VY naHiii poOOTI PO3MIAHYTO 3a1a4y HaABUYAHHSI HEHPOHHOI MEPEXi TTHOOKOI TOBIPH 3a JOMIOMOI0I0 0OMEKEHOI MAIIMHU
BonpiiMaHa Ta BHOOPOM OIITHMAIEHOTO KPUTEPito A 1 HaBUaHHS. PO3IJISIHYTO Pi3HI alropuTMU HaBYaHHS OOMEKEHOT
MamuHA bonbliMaHa, sika BUKOPHCTOBYETHCS ISl ITOIIEPEHBOI0 HaBYaHHS HEHMPOHHOI Mepexi IITMOOKOI TOBipH, IS
MiJBUIICHHSA €(pEKTUBHOCTI POOOTH IIi€i Mepexi 3 MOAAJbIIAM BHUPIMICHHAM 3a7adi CTPYKTYPHO-TIAPAMETPUIHOTO
CHHTE3y HEHWpOHHOI Mepexi rimOokoi moBipu. lle 3aBmaHHs siBisge coOOI0O 3amady OOTPYHTYBaHHS HEOOXITHOCTI
OINITUMAJBHOTO BUOOPY ANTOPUTMY HaJalITyBaHHS OOMEKEHOI MalMHU bojbliMaHa [UIs T ABUILEHHS SIKOCTI HABYaHHS
HEeWpOHHOI Mepexi rmOokoi noBipu. s BupimeHHS i€l MpoOlieMH 3alpONOHOBAHO CTBOPUTH aBTOMAaTH30BaHY
CHCTEMY HaJIAIITYBaHHS HEHPOHHOI MepexXi IIIMOO0KOi AOBipH, sika Oyae oOMpaTH ONTHMajbHI KpUTEpii HABUaHHS LIS
JTAHOT HEUPOHHOI MEPEeKi.

KurouoBi cioBa: HeiipoHHa Mepeka MIMOOKOI JOBipH; oOMekeHa MalidHa BoibIMaHa; KOHTpACTHA PO30IKHICT;
CTiliKa KOHTpacTHa PO301XKHICTh; MapaiellbHe 3arapTyBaHHSI.
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B. M. Cunernazo, A. P. TopaHok. ABTOMATH3UPOBAHHAS CHUCTEMAa HACTPOHKH OrPAHMYEHHOH MAIIWHBI
Bonbnmana

B nanHoli pabore paccMoTpeHa 3amada oOydyeHHsS HEHpOHHON CeTH INIyOOKOro JOBEpHs C IOMOINBIO OrpaHUYeHHOH
MamuHbl bonbliMana U BEIOOPOM ONTUMAJIBHOTO KPUTEpHUs JUIsi ee 0OyueHusi. PaccMOTpeHbI pa3iuyHbIe ajJrOpUTMbI
00y4eHUs: OrpaHMYEHHOIN MaIluHbI bojbliMaHa, KOTopasl UCIIONb3yeTCs sl PEeIBAPUTEINBHOI0 00yUeHHsT HEHpOHHON
ceTd TIIyOOKOro JoBepHs, Ul TOBBILEHHS 3((EKTHUBHOCTH pPabOThI CETH C IOCIEAYIOIIUM pEUIeHHEeM 3a/a4u
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CTPYKTYPHO-IIApAaMETPUYECKOr0 CHHTE3a HEHPOHHOH CeTH TIIIyOOKOro noBepus. OTa 3ajgada NPeICTaBisieT COOOH
3aadyy OOOCHOBAaHHUsI HEOOXOAMMOCTH ONTHMAaJbHOIO BBIOOpA alrOpUTMa HACTPOMKM OrpaHMYEHHOH MalIdHbI
BonpiiMaHa Juts OBBINIEHHS KauecTBa 00y4eHHs HEHPOHHOI ceTH riryookoro nosepust. J{ist pemieHust 3Toi npoosieMbl
MIPE/IJIOKEHO CO3/[aTh aBTOMaTH3UPOBAHHYIO CHCTEMY HACTPOMKHM HEMPOHHOM CeTr TIy0OoKOoro 10BepHs, KoTopas Oyaer
BBIOMpATh ONTUMAJILHBIE KPUTEPHU O0YUEHHUS JUT JaHHOH HEHPOHHOM CeTH.
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