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Abstract—In this paper the problem of learning the deep believe neural network with help of a restricted 
Boltzmann machine and the choose of an optimal algorithm for its training is considered. Different 
algorithms of restricted Boltzmann machine training, which are used for the pre-training of deep believe 
neural network, are considered, in order to increase the efficiency of this network and further solve the 
problem of structural-parametric synthesis of deep believe neural network. This task represents the task 
of justifying the necessity of optimal choice of the restricted Boltzmann machine adjustment algorithm for 
improving the quality of training of the neural network. To solve this problem, it is suggested to create an 
automated adjustment system of restricted Boltzmann machine, which choose the optimal training 
algorithm for this neural network. 

Index Terms—Deep Believe Network; Restricted Boltzmann Machine; Contrastive Divergence; 
Persistent Contrastive Divergence; Parallel Tempering. 

I. INTRODUCTION 

Today, artificial neural networks are used not 
only in the industry, but also in almost all spheres of 
human life. They come into practice wherever it is 
necessary to solve the tasks of forecasting, 
classification or control. 

Such impressive success is determined by several 
reasons: 

 rich opportunities: neural networks is an 
extremely powerful simulation method that allows to 
reproduce extremely complex dependencies; 

 easy to use. 
During the period of neural networks existence, 

(from the middle of the XX century), many types of 
neural networks were created. In this paper, a deep 
believe neural network (DBN) with previous 
training on the basis of a restricted Boltzmann 
machine (RBM) is considered.. 

However, despite the high popularity of artificial 
neural networks, there is an important problem with 
their use, namely, the choice of optimal training 
algorithm. In this article, it is considered different 
learning methods of RBM. It is necessary to admit 
that the choice of the method of training changes the 
efficiency of the neural network of deep learning. 
Therefore, finding an optimal algorithm for training 
artificial neural network is a very important task of 
its optimizing.  

II. PROBLEM STATEMENT 

A deep believe neural network is a multi-layer 
perceptron with two or more hidden layers of 
neurons in which neurons in the middle of each layer 
are not interconnected, but bound between neurons 

of neighboring layers. Thanks to the multilayered 
architecture, they allow you to process and analyze a 
large amount of data, as well as simulate cognitive 
processes in various areas.  

Historically, the first appeared deep believe 
neural networks and deep perceptron, which in the 
general case are multilayered perceptron with more 
than two hidden layers [1]. The main difference 
between the deep neural network of deep perceptron 
is that the deep believe neural network in the general 
case is not a feed forward neural network. Until 
2006, in the scientific environment, the paradigm 
was a priority, that the multilayer perceptron with 
one, maximum of two hidden layers is more 
effective for the nonlinear transformation of the 
input space of images into output compared with the 
perceptron with a large number of hidden layers. It 
was considered that it makes no sense to use 
perceptron with more than two hidden layers. This 
paradigm was based on the theorem that a 
perceptron with one hidden layer is a universal 
approximator [1].  

The second aspect of this problem is that all 
attempts to apply a back propagation algorithm to 
study a perceptron with three or more hidden layers 
did not lead to an improvement in the solution of 
various problems. This is due to the fact that the back 
propagation algorithm is ineffective for learning 
perceptrons with three or more hidden layers when 
used the sigmoid activation function due to the 
problem of vanishing gradient problem [1]. 

In article [2] proposed proposed an “greedy 
layer-wise” algorithm, which became an effective 
means of learning deep neural networks. It has been 
shown that the deep neural network has a high 
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efficiency of nonlinear transformation and 
representation of data in comparison with the 
traditional perceptron. As a result, the first hidden 
layer allocates a low-level space of signs of input 
data, the second layer is a detector of the space of 
signs of a higher level of abstraction, etc. [3], [1]. 

As already noted, the deep neural network 
contains a lot of hidden layers of neuronal elements 
and implements a deep hierarchical transformation 
of the input space of images.  

For this neural network (Fig. 1), it is used the 
sample   , , 1, ,j jJ j PR Y    pairs type of 
“attribute-value”, where ,j jR Y  is the input and 
output vectors neural network respectively. 

It is necessary to choose an optimal algorithm of 
RBM training as a criterion it is proposed a 
generalized error criterion. 

 
Fig. 1. Deep Believe Network 

The output value of the jth neuron of the kth layer 
is determined as follows: 
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where F is the activation function of the neural 
element; k

jS  is the weighted sum of the jth neuron of 

the k-layer; k
ijw  is the weighting factor between the 

ith neuron (k–1)th layer and the jth neuron of the kth 
layer; k

jT  is the threshold value of the jth neuron of 
the kth layer. 

For the first layer 0 .i iy x  In the matrix form, 
the output vector of the k-th layer: 

   1 ,k kk k kF FS WY Y T    

where W is the matrix of weight coefficients; 1kY   is 
the output vector (k–1)th layer; kT  is the vector of 
the threshold values of the k-th layer neurons [1]. 

The activation function determines the output 
value of the neuron depending on the result of the 
weighted sum of the inputs and the threshold value. 

The first type of the activation functions is step 
function. If the value of Y is greater than a certain 
threshold value, we consider the neuron activated. 
Otherwise, we say that the neuron is inactive. Such a 
scheme should work, but first let's formalize it: 

1. Function F = activated if Y > bias, otherwise 
not. 

2. Another way: F = 1, if Y > bias, otherwise     
A = 0. 

Such a function is shown in the Fig. 2. 

 
Fig. 2. Step activation function 

The second type is linear activation function 
(Fig. 3). 

 
Fig. 3. Linear activation function 

The linear function is a straight line and is 
proportional to the input (that is, the weighted sum 
of this neuron) .F cx  

Next on our list is the activation function ReLu
   max 0,F x x . 
Using the definition, it becomes clear that ReLu 

returns the value of x if x is positive, and 0 otherwise 
(Fig. 4).  
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Fig. 4. ReLu activation function 

In most cases, the ReLu works as a good 
approximator. 

If a deep neural network is used to classify 
images, the output values of the network are often 
determined based on the softmax activation function, 
and also called sigmoid (Fig. 5). 
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Fig. 5. Softmax activation function 

III. TOPOLOGY OF RBM 

The restricted Boltzmann machine consists of 
two layers of stochastic binary neural elements, 
which are interconnected by bidirectional symmetric 
connections (Fig. 6). The input layer of the neural 
elements is called visible (layer i), and the second 
layer is hidden (layer j). A deep neural network can 
be represented as a collection of restricted 
Boltzmann machines. A restricted Boltzmann 
machine can approximate (generate) any discrete 
distribution if sufficient neurons of the hidden layer 
are used [14]. 

 
Fig. 6. Restricted Boltzmann Machine 

This network is a stochastic neural network in 
which the states of visible and hidden neurons 
change in accordance with the probabilistic version 
of the sigmoid activation function: 
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The states of visible and hidden neural elements 
are made independent: 
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Thus, the states of all the neural elements of a 
RBM are determined through the probability 
distribution. In restricted Boltzmann machine, 
neurons of the hidden layer are feature detectors that 
determine the patterns of input data. The main task 
of training is to reproduce the distribution of input 
data based on the states of the neurons of the hidden 
layer as accurately as possible. This is equivalent to 
maximizing the likelihood function by modifying 
the synaptic connections of the neural network. 

Despite the architectural differences of deep 
neural networks, the principles of their learning are 
identical. Therefore, we consider the basic concepts 
of learning such networks on the example of a RBM. 
For each we will calculate generalized error  

 2

1

1 ,
2

k

i
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                      (3) 

where k is the number of elements of sample; y is the 
given output values; y  are expected output values. 

IV. REVIEW OF TRAINING ALGORITHMS 

In this section, algorithms for the training of a 
RBM will be considered. All common training 
algorithms for RBMs approximate the log-likelihood 
gradient given some data and perform gradient 
ascent on these approximations. 

A. Contrastive Divergence 
Obtaining unbiased estimates of log-likelihood 

gradient using Markov Chain Monte Carlo (MCMC) 
methods typically requires many sampling steps. 
However, recently it was shown that estimates 
obtained after running the chain for just a few steps 
can be sufficient for model training [4]. This leads to 
contrastive divergence (CD) learning, which has 
become a standard way to train RBMs [2], [4] – [7]. 

The idea of k-step contrastive divergence 
learning (CD-k) is quite simple: instead of 
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approximating the second term in the log-likelihood 
gradient by a sample from the RBM-distribution 
(which would require running a Markov chain until 
the stationary distribution is reached), a Gibbs chain 
is run for only k-steps (and usually k = 1). The Gibbs 
chain is initialized with a training sample v(0) of the 
training set and yields the sample v(k) after k steps. 
Each step t consists of sampling h(t) from  (0)p h v  

and subsequently sampling ( 1)tv   from  ( ) .tp v h  
The gradient, with respect to θ of the log-likelihood 
for one training pattern v(0) is then approximated by  
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This algorithm was invented by Professor Hinton 
in 2002, and is distinguished by its simplicity. The 
main idea is that mathematical expectations are 
replaced by quite definite values. This approximation 
is based on Gibbs sampling. The CD-k process looks 
like this (Fig. 7): 

 the state of visible neurons equates to the 
input image; 

 the probabilities of states of the hidden layer 
are displayed; 

 for each neuron of the latent layer, the 
condition "1" is brought in with the probability equal 
to its current state; 

 the probabilities of the visible layer are 
derived based on the latent; 

 if the current iteration is less than k, then 
return to step 2; 

 the probabilities of states of the hidden layer 
are displayed. 

 
Fig. 7. Schematic application of CD-k 

The longer do sampling, the more accurate our 
gradient will be. At the same time, the professor 
asserts that even for CD-1 (only one iteration of 
sampling) a quite good result is obtained. The first 
term is called the positive phase, and the second 
with the minus sign is called the negative phase. 

In the Gibbs sampling, the first terms in the 
expressions for the gradient characterize the data 
distribution at time t = 0, and the second is the 

reconstructed or generated state of the state at time   
t = k. Proceeding from this, the CD-k procedure can 
be represented as follows: 

           0 0 1 1 .x y x y x k y k       

As a result, can got the following rules for 
training the RBM network. In the case of the use of 
CD-1 k = 1 and taking into account that in 
accordance with the method of gradient descent 

     
 

1 ,ij ij
ij

InP x
t tw w

tw


  


 for consistent 

training have: 

            
        
        

1 0 0 ,

1 0 1 ,

1 0 1 .

ij ij i ij j

i i i i

j j j j

t t k ky yw w x x

t t x xT T

t t y yT T

   

   

   

 

Similarly, for the CD-k algorithm: 
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In the case of group learning and CD-k 
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From the last expressions it can be seen that the 
rules of training a restricted Boltzmann machine 
minimize the difference between the original data 
and the results generated by the model. The values 
generated by the model are obtained by Gibbs 
sampling. 

B. Persistent Contrastive Divergence 
The CD-1 is fast, has a low dispersion and is a 

reasonable approximation to the likelihood gradient, 
but it is still significantly different from the 
probability gradient when the mixing speed is low. 
Generally speaking, CD-k for greater n is better than 
CD-1 if there is enough time to work [8]. 

Although CD-1 is not a very good approximation 
to maximum likelihood learning, this does not seem 
to matter when an RBM is being learned in order to 
provide hidden features for training a higher-level 
RBM. CD-1 ensures that the hidden features retain 
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most of the information in the data vector and it is 
not necessarily a good idea to use a form of CD that 
is a closer approximation to maximum likelihood but 
is worse at retaining the information in the data 
vector. If, however, the aim is to learn an RBM that 
is a good density or joint-density model, CD-1 is far 
from optimal. 

At the beginning of learning, the weights are 
small and mixing is fast so CD-1 provides a good 
approximation to maximum likelihood. As the 
weights grow, the mixing gets worse and it makes 
sense to gradually increase the n in CD-k. When n is 
increased, the difference of pairwise statistics that is 
used for learning will increase so it may be 
necessary to reduce the learning rate. 

Method, called Persistent Contrastive Divergence 
(PCD) solves the sampling with a related method, 
only that the negative particle is not sampled from 
the positive particle, but rather from the negative 
particle from the last data point [8]. 

The idea of persistent contrastive divergence 
(PCD) [8] is described in [9] for log-likelihood 
maximization of general MRFs (Markov Random 
Fields) and is applied to RBMs in [8]. The persistent 
contrastive divergence approximation is obtained 
from the CD approximation (4) by replacing the 
sample v(k) by a sample from a Gibbs chain that is 
independent of the sample v(0) of the training 
distribution. The algorithm corresponds to standard 
CD learning without reinitializing the visible units of 
the Markov chain with a training sample each time 
we want to draw a sample v(k) approximately from 
the RBM distribution. Instead one keeps “persistent” 
chains which are run for k Gibbs steps after each 
parameter update (i.e., the initial state of the current 
Gibbs chain is equal to v(k) from the previous update 
step). The fundamental idea underlying PCD is that 
one could assume that the chains stay close to the 
stationary distribution if the learning rate is 
sufficiently small and thus the model changes only 
slightly between parameter updates [8], [9]. The 
number of persistent chains used for sampling (or 
the number of samples used to approximate the 
second term of gradient) is a hyper parameter of the 
algorithm. In the canonical form, there exists one 
Markov chain per training example in a batch. 

The persistent contrastive divergence algorithm 
was further refined in a variant called fast persistent 
contrastive divergence (FPCD) [10]. Fast PCD tries 
to reach a faster mixing of the Gibbs chain by 
introducing additional parameters , ,f f f

ij j jw b c  (for     
i = 1, . . . , n and j = 1, . . . , m) referred to as the fast 
parameters. This new set of parameters is only used 
for sampling and not in the model itself. When 

calculating the conditional distributions for Gibbs 
sampling, the regular parameters are replaced by the 
sum of the regular and the fast parameters, i.e., 
Gibbs sampling is based on the probabilities  
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and  
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instead of the conditional probabilities given by (1) 
and (2). The learning update rule for the fast 
parameters is the same as the one for the regular 
parameters, but with an independent, large learning 
rate leading to faster changes as well as a large weight 
decay parameter. Weight decay can also be used for 
the regular parameters, but it has been suggested that 
regularizing just the fast weights is sufficient [10]. 
Neither PCD nor FPCD seem to increase the mixing 
rate (or decrease the bias of the approximation) 
sufficiently to avoid the divergence problem, as can 
be seen in the empirical analysis in [11]. 

C. Parallel Tempering 
However, the study of contrast divergence is 

considered an effective way to study RBMs, it has a 
drawback due to the biased approach in the learning 
curve. This chapter proposes using the advanced 
Monte Carlo method, which is called Parallel 
Tempering (PT), and experimentally shows that it 
works effectively [12]. 

The problem that was not solved by either the 
Gibbs sampling or the CD training is that the 
samples formed during the negative phase are not 
inclined to explain the whole state of the state. Thus, 
this section proposes to use another improved 
version of the Monte Carlo Markov Chain sampling 
method, called Parallel Tempering (PT). 

The introduction of the PT sample occurs in the 
1980s, when Swendsen and Wang introduced the 
Monte Carlo replica and applied it to the Ising model 
[15], which is equivalent to a Boltzmann machine 
with visible neurons. Simulation of the replica 
Monte Carlo suggested modeling several copies of 
particles (replicas) at different temperatures 
simultaneously, rather than simulating them 
consistently. Similarly, Geyer later introduced the 
use of a parallel MCMC sampling chain based on 
the mixing rate of samples through parallel chains to 
maximize the likelihood [16]. 

The basic idea of PT sampling is that samples are 
collected from multiple chains of Gibbs sampling 
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with different temperatures. The term temperature in 
this context means the energy level of the overall 
system. The higher the temperature of the chain, the 
more likely it is that samples collected with Gibbs 
move freely. 

For each pair of samples collected from two 
different chains, the probability of swapping is 
calculated, and the samples vary places according to 
the probability. The probability of a swap for a pair 
of samples is formulated in accordance with the 
Metropolis rule [13] 

     
   

1 2 1 1

1 2

1 1 2 2

swap , min 1, ,T T T T
T T

T T T T

P x P x
P x x

P x P x
 

   
 

  

where T1 and T2 denote the temperatures of the two 
chains, and 

1Tx  and 
2Tx  denote samples collected 

from two chains. 
After each round of sampling and swapping, the 

sample at the true temperature T = 1 is gathered as 
the sample for the iteration. The samples come from 
the true distribution,  ,p v h   in case of RBMs, 
assuming that enough iterations are run to diminish 
the effect of the initialization. 

It must be noted that the Gibbs sampling chain 
with the highest temperature (T = 0) is never multi-
modal such that all the neurons are mutually 
independent and likely to be active with probability 
1/2. So, the samples from the chain are less prone to 
missing some modes. From the chain with the 
highest temperature to the lowest temperature, 
samples from each chain become more and more 
likely to follow the target model distribution. How 
PT sampling could being trapped into a single mode 
is illustrated in Fig. 8. 

 
Fig. 8. Illustration of how PT sampling could avoid being 
trapped in a single mode. The red, purple, and blue curves 
and dots indicate distributions and the samples from the 

distributions with the high, medium, and cold 
temperatures, respectively. Each black line indicates a 

single sampling step 

This nature of swapping samples between the 
different temperatures enables better mixing of 
samples from different modes with much less 
number of samples than that would have been 
required if Gibbs sampling was used. 

Parallel tempering sampling in training RBMs 
can be simply uses as a replacement of Gibbs 
sampling in the negative phase. This method is, from 
now on, referred to as PT learning. Due to the 
previously mentioned characteristics, it is expected 
that the samples collected during the negative phase 
would explain the model distribution better, and that 
the learning process would be successful even with a 
smaller number of samples than those required if 
Gibbs sampling is used. 

V. PROBLEM SOLUTION 

As known, the main task of this work is finding 
an optimal algorithm for configuring a restricted 
Boltzmann machine. For a comparative example, 
three learning algorithms were used: Contrastive 
Divergence (CD), Persistent Contrastive Divergence 
(PCD), Parallel Tempering (PT). 

This section is intended to describe a general 
algorithm that, based on criteria such as learning 
speed and accuracy of the neural network, determines 
the most productive algorithm of RBM training. 

The block diagram of how to work an automated 
adjustment system of restricted Boltzmann machine 
is shown in Fig. 9. 

On input of each deep believe neural network, 
which consists of a RBM stack and a multilayer 
perceptron, is served with a training sample. These 
three deep believe neural networks are pre-trained 
using RBMs with different learning algorithms, 
namely Contrastive Divergence (CD), Persistent 
Contrastive Divergence (PCD), Parallel      
Tempering (PT).  

Then the results of the outputs from the each 
multilayer perceptron are recorded in the database 
and also for these outputs, the generalized error 
criterion is computed. The results of these 
calculations arrive at the block of determination 
minimum error, where among them the result is 
chosen with the minimum value of error. 

After these calculations, a block of choice 
optimal algorithm is included into the work, where 
the results are from three  deep believe neural 
networks. Based on results from the block of 
determination minimum error, the automatic 
adjustment system decides which algorithm is 
optimal and then outputs the result of the deep 
believe neural network with this algorithm. 
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Fig. 9. Structural scheme of automated adjustment system of restricted Boltzmann machine

Thus, the adjustment algorithm of deep believe 
neural network has the following form: 

1. Restricted Boltzmann machine is adjusted 
according to the first, second and third algorithms 
one by one, for this training sample. As a result, 
receive the first, second and third sets of weight 
coefficients W1, W2, W3. 

2. By a result of this training, the main neural 
network – perceptron is initialized in sequence, 
which involves the determination of the initial 
values of RBM weights coefficients for the first, 
second and third cases. 

3. As a result, using of the back propagation 
method, the values of weight coefficients are found 
according to the first, second and third algorithms of 
the training restricred Boltzmann machine. 

4. The value of a generalized error criterion is 
found on the test sample for the first, second and 
third cases. 

5. Based on the obtained values of the 
generalized error criterion, the optimal adjustment 
algorithm of restricted Boltzmann machine is 
chosen. 

This is a simple by structure and logic structural 
scheme of an automated system for selecting an 
optimal algorithm for training a restricted 
Boltzmann machine, but also an extremely 
capacious one. Because we use up to three deep 
believe networks (RBM and MLP) and in addition, 
we create additional blocks for calculating the 
minimum errors of each algorithm and comparative 
blocks. 

As an example, are considered the deep believe 
neural network (Fig. 10) with the three hidden layers 
of the perceptron, for which corresponds three 
Boltzmann machines connected sequentially. 

 
Fig. 10. Deep believe neural network 

The training sample contained 50 examples, 
represented as vectors of 250 × 250 dimension and 
coordinate values on the segment (−1; 1). The test 
sample included an additional 10 examples of the 
same dimension. Results of modeling is represented 
in Tables I, II, and III. 
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TABLE I. RESULTS OF CD MODELING 

Initialized weight coefficients 
of RBM 

Initialized weight coefficients 
of perceptron Generalized error criterion 

[0.258; 0.650; 0.845; 0.254; 0.873] [0.302; 0.570; 0.900; 0.258; 0.950] 0.0225 

TABLE II. RESULTS OF PCD MODELING 

Initialized weight coefficients 
of RBM 

Initialized weight coefficients 
of perceptron Generalized error criterion 

[0.565; 0.841; 0.785; 0.255; 0.720] [0.570; 0.850; 0.790; 0.258; 0.710] 0.0178 

TABLE III. RESULTS OF PT MODELING 

Initialized weight coefficients 
of RBM 

Initialized weight coefficients 
of perceptron Generalized error criterion 

[0.356; 0.745; 0.552; 0.450; 0.854] [0.300; 0.654; 0.720; 0.258; 0.957] 0.0365 
 

According to results test sample of generalized 
error for three algorithms, the optimal algorithm for 
RBM training is a Persistent Contrastive 
Divergence. Because it has smaller value of 
generalized error than other two algorithms. 

VI. CONCLUSION 

Creating such an automated adjustment system of 
restricted Boltzmann machine allows to choose the 
optimal algorithm for its training, based on 
performance generalized error criterion of the neural 
network. Using this approach will increase the 
efficiency of solving tasks with the help of deep 
believe neural network and extend its use in the 
applied field. 
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В. М. Синєглазов, О. Р. Тофанюк. Автоматизована система налаштування обмеженої машини Больцмана 
У даній роботі розглянуто задачу навчання нейронної мережі глибокої довіри за допомогою обмеженої машини 
Больцмана та вибором оптимального критерію для її навчання. Розглянуто різні алгоритми навчання обмеженої 
машини Больцмана, яка використовується для попереднього навчання нейронної мережі глибокої довіри, для 
підвищення ефективності роботи цієї мережі з подальшим вирішенням задачі структурно-параметричного 
синтезу нейронної мережі глибокої довіри. Це завдання являє собою задачу обгрунтування необхідності 
оптимального вибору алгоритму налаштування обмеженої машини Больцмана для підвищення якості навчання 
нейронної мережі глибокої довіри. Для вирішення цієї проблеми запропоновано створити автоматизовану 
систему налаштування нейронної мережі глибокої довіри, яка буде обирати оптимальні критерії навчання для 
даної нейронної мережі. 
Ключові слова: нейронна мережа глибокої довіри; обмежена машина Больцмана; контрастна розбіжність; 
стійка контрастна розбіжність; паралельне загартування. 
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В. М. Синеглазов, А. Р. Тофанюк. Автоматизированная система настройки ограниченной машины 
Больцмана 
В данной работе рассмотрена задача обучения нейронной сети глубокого доверия с помощью ограниченной 
машины Больцмана и выбором оптимального критерия для ее обучения. Рассмотрены различные алгоритмы 
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структурно-параметрического синтеза нейронной сети глубокого доверия. Эта задача представляет собой 
задачу обоснования необходимости оптимального выбора алгоритма настройки ограниченной машины 
Больцмана для повышения качества обучения нейронной сети глубокого доверия. Для решения этой проблемы 
предложено создать автоматизированную систему настройки нейронной сети глубокого доверия, которая будет 
выбирать оптимальные критерии обучения для данной нейронной сети. 
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