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Abstract—The processes of blood flow in the aorta under the influence of swirling blood flow at the
output from the left ventricle of the heart are studied. The problem of simulated swirling flow of blood in
the left ventricle as a nonlinear boundary value problem in the form of a system of differential equations
in partial derivatives with moving limits is formulated. Expressions for the field of blood flow velocity
and pressure in the left ventricle are obtained. The flow of blood in the aorta under the influence of a
swirling flow at the exit from the lefi ventricle is described by a system of nonlinear equations in partial
derivatives. The solution of this boundary-value problem is sought using an iterative procedure based on
using integral transformations for spatial variables and time.

Index Terms—Aorta; vortex flows; swirling currents; Navier—Stokes equation; integral transformations;

left ventricle.
I. INTRODUCTION

The nature of vortex currents in the left ventricle
of the heart has been studied and studied by many
leading scientists in the world. The left ventricle is
seen as part of an elongated ellipsoid with a movable
wall, the dynamics of which is induced from the
outside. One of the most important properties of the
blood that is observed in the left ventricle during
diastole is the presence of vortex rings that curl
through the jet phenomena coming from the mitral
valve. The presence of vortex rings that develop
during stasis of diastole is confirmed by numerous
experimental studies on the basis of Doppler and
magnetic resonance. During diastole, when the left
ventricle is filled with a blood stream from the
atrium, the ventricle expands, resulting in the area of
the stomach moving in the opposite direction to the
flow of blood.

II. PURPOSE OF THE RESEARCH

The purpose of the research is to develop a
mathematical model of the vortex blood flow in the
left ventricle, under the influence of which the flow
of blood swirled at the entrance to the aorta and on
this basis in the development and solution of the
corresponding mathematical model of blood flow in
the aorta.

III. OVERVIEW

It is believed [1] that the main dimensionless
parameter for any viscous flow is the Reynolds
number. The characteristic of the degree of rotation
of the flow is the spin parameter. Experimental
studies [2], usually use the integral spin parameter:

F
G = 1
7 (1)

The momentum flow in the axial direction, taking
into account the contribution of the components of
the turbulent shear stress [1].

E,, = [ (oV.V,+pVV)rds.

The flow of traffic in axial direction, taking into
account the contribution of turbulent normal stresses
and pressures.

F,=[[pV2+pV? +(p=p.)ldE.

Most of the twisty currents in the technical
dictations are turbulent. Therefore, an -effective
Reynolds number is introduced and used to solve the
complete Navier—Stokes differential equation
system. A detailed review and analysis of such
models is made in [4], and an example of a study of
a swirling current in a vortex tube and jet is
considered in [5].

A significant drawback of all these models,
which are considered in the links, is the absence of
external force, which prompts the emergence of
twisted streams.

The Navier—Stokes equation and the continuity
equation for an axially symmetric flow in cylindrical

coordinates (r,0,z) can be represented in the
form [2].
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Following the generally accepted method to
exclude the variable p from these equations, we
write them with respect to the function of the current
V, the vorticity Q and the azimuthal velocity V, :

X, v+ Lr
ot 0z - or
2 2 oV )
_ 1 aszz+as22+a(g/r) el V,) (5)
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where
V,——la—w, 1/7:18_"’, :aV,_éVZ' (8)
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The flow is considered in the cylindrical region
D{0<z<z, 0<r<r)} bounded by the planes
z=0, z=z, and the surface of rotation » =7, . In the
case of flow in an axisymmetric channel, the
computational domain is bounded by a solid surface
r, =1, in the case of a free vortex, by the conditional

boundary 7, =const >1.

The main input data determining the flow
development in the D region are given in the initial
section z=0: V_=V_(r), V, =V, (7).

The radial velocity is generally assumed to be
zero. The functions V_ (r), V,,(r) are taken either

from experimental data or derived from theoretical
considerations. The first possibility refers to the case
when the initial field is formed using special
devices; such flows are organized in pipes for
technical applications. The second possibility arises
in cases where the vortex flow with a twist is formed
due to the natural development of the flow.

Thus, for z=0 there is some flow with a certain
initial spin. It is required to determine the further
structure of such an initial swirling flow in the D
region. Ultimately, for the region under study, it is
necessary to find the velocity field and construct a

picture of the streamlines. Of particular interest here
are the areas of return currents adjacent to the flow
axis, which can be formed with certain combinations
of the Reynolds number and the spin parameter. The
formation and structure of such recirculation zones
will be focused on.

In the output section, the boundary conditions
can be set differently. It can be possible directly set
the values of y, Q and V, (hard boundary

conditions) or assume that the derivatives of these
variables on the coordinate z are zero (soft
boundary conditions).

—=—=—=0, 0<r<p, z=z.

They have a weak effect on the structure of the
flow upstream; therefore, when using them, one can
confine oneself to a less extended region D along z.

The adhesion conditions are set on the side
surface of the computational domain for swirling
flow in an axisymmetric channel

Y =\, = const, V¢=0, aa—\:j=0, 0<z<z, r=r,

The current function is determined up to a
constant, so it is assumed that y =0 for »=0. Then
on the flow axis it is had the following conditions of
flow symmetry

y=0,7,=0,Q=0, 0<z<z, r=0.

Initial conditions specified
Q=Q(r,z), V,=V,(r,z), t=0, (r,z)eD. (9)

The general algorithm for solving the Navier —
Stokes system (equations (5) — (7)) includes the
following iterations [7]. For each time step, the
Poisson equation is first solved for W, then the

values of V_, V_ are calculated using the formulas
(8), then the equation (7) is solved for ¥V, after

which the vorticity field from (6) is determined.

A significant feature of the movement of blood in
the left ventricle is that the shape of the heart is a
function of time, that is, it is mobile. Therefore, it is
necessary to path from a cylindrical coordinate
system to a mobile one, considering the shape
(idealized) in the form of an elongated ellipsoid.

The degenerate ellipsoidal coordinates (o, 3, @)

for an elongated ellipsoid of rotation are determined
using the formulas

x=csinfcos@, y=csinasinfsing, z=cacosp,

c is a scale factor,0< o <o0,0<B<n, -n<@p<m.
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Coordinate surfaces: extruded of

rotation o, = const , [3].

h=h, =c\*a+sinB, h=h,=casinp.
c ( (X,+sin2B) o oo oal

2
+ .1 i(sinBa—u]+(2L+ 1 Jé—lﬁ . (10)
sinf op P o sin’B )o@
After solving the boundary value problem (5) —
(7) taking into account (10) over the found velocity

field, the pressure distribution in the flow can be
determined from the following Poisson equation:

ellipsoids

2 2
6p+6p+16p

o2 o ror
VoV
:2 _GL%+%%+G2_¢_‘P i
or 0z Or Oz r or

The boundary conditions for it are the Neumann
conditions, which are obtained from the equations of
the normal component of the impulse and in
dimensionless form have the form:

—+—|, 0<r<1, z=0,z=z2,,
or r

The metric coefficients of the moving coordinate
system are

h, =ah,, hy=3(ap)sinm, h, =042(ap)—cos2n,

where the time dependence is omitted for brevity.
This coordinate system describes a moving object in
physical space; therefore, a fixed point in (u,n, 0) —
space has a physical velocity ¢, whose components
can be written in the general case as

. oaL a
¢, = 6—(op)(ap) + ph, —,
h, o
.0 .
¢, =d—sinncosm, ¢, =0,
hrl
where the point denotes the time derivative. In this
case, the expression for ¢, is simplified, since
a=0.
The diameter of D, = D(t=0) at the beginning
of the diastole filling phase is selected as the

reference length scale. The time scale of 7' is the
heart rate period. Thus, we have the Stokes number
B=D;/uT, v is the kinematic viscosity of the
fluid.

Here the diastolic phase is analyzed, therefore it
has a dimensionless duration of approximately 0.5.

The system is excited by the arrival of a
discharge with a given temporary law; A simple
analytical form was chosen, which reproduces the
rapid acceleration and deceleration of the flow
pulsation inside the chambers of the heart and the
main arterial vessels. It is represented by a
dimensionless function.

L(t)= A(St)t’e™”, (11)

f =20 is the characteristic deceleration frequency,
giving a peak time of 7, =0.1.

The A(St) function, which scales the total bit,
depends on the Strouhal number St=D,/(UT); the
scale of U is the speed at the input section, n=m/2,

which corresponds to the maximum value of the
discharge L, =L(t,) averaged over the area

actually occupied jet. The following velocity profile
v, is assigned to the input:

Vn(“,e):C(f)exp[_[(rcose_g) 2+(rS1ne) j ] (12)

c
forn=mn/2,

where ¢ is the eccentricity of the profile, ¢ controls
the relationship between the incoming jet and the
diameter D(¢), C is the normalization factor for
matching with (11). From the formula (12) the
velocity scaleis U =4L, / (n(cD,)?).

The real values for the parameters
6~(0.6-0.7) and &~(0.1-0.14) cm; in this
paper, we use the fixed value o=0.6, therefore
C=209/5¢.

A realistic flow profile Q(¢) for an ideal early
filling period can be represented as

O=Ar’e™”, (13)

where [ is the scale frequency deceleration; A4 is
the scale of the total volume input. The specification
of the law of discharge corresponds to the change in
time of the volume ¥V =n*/6D*H and gives the
ratio between the diameter and height of the
derivatives

T o, [2dD ldH]
—t— .

o="—"DpDH ==+ 22
6 Ddt H drt
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The system was analyzed by changing the
eccentricity of the ¢ inlet profile (13) in the range
from 0.02 to 0.125. The Stokes number B was
considered in the interval between 64 and 144, the
Strouhal number was first set to St = 0.072, and then
reduced to 0.05.

The case of =144, ¢=124 is discussed as a
reference; the results are then compared with the
results obtained with different parameter values.

To determine the moving boundaries in [5], a
system of differential equations for D(¢) and H(¢)

is proposed:
dD _6Q 8H’-D’
dt m 20DH®-2HD’

cm:Hﬂ)4m

dt D dt 8H>—D*’
with initial conditions D(0) = D,),

te(0,T),

1€(0,7),

H(0)=H,.
IV. SETTING RESEARCH TASKS

The considered mathematical models of fluid
motion in the left ventricle (2) — (4) and the
corresponding equations for vorticity (5) — (7), in
our opinion, does not correspond to the actual state
of affairs. It means the following. Fluid motion and,
respectively, equations for vorticity are considered
as non-stationary equations (6) — (7), that is,
vorticity is a function of spatial coordinates and
time, and Poisson’s equation (5) — stationary. It is
logical instead of (5) to write a nonstationary
equation

@:laz\v.{_é l@ +0
o0 rozt or\ror )

The study of vortex flows in the heart in the
moving coordinate system leads to the need to
consider the following system of nonlinear equations
with respect to flow velocity and vorticity. First of
all, we write down the expressions for the Laplacian
and the divergence of the flow (the convective
component in the moving coordinate system) taking
into account the moving wall of the heart and
equation:

ovu oOvu Ovyu
Vyy=—t— 42428

or oz 00

0 0
L P SO |
ah [l ow on  h 00

Here, the symbol u in accordance with the
equations (5) — (7) is denoted Q, V_ or y. The
system of equations (5) — (7) can now be written in
this form:

N _ay+0, (14)
ot
2
X vva-Laorel% (15)
ot Re r oz
ov, 1 v
—L+Vyy,=—| Ay, — 2|, 16
ot 0 Re{ C oy } (16)
Formulas (8) take the form:
1 1
m:__@ﬁ %:_@L (17)
h, ou h, on
1 (o ov ol
Q= oc_hn£8_p: - aa—;j + EE[COS(ZT])VH —aap)v, J

V. PROBLEM SOLUTION

Since the reduced equations describing the
swirling flows in the left ventricle represent a system
of nonlinear equations for fluid flow velocity,
vorticity and current functions, as well as wall
motion, the real way to solve such a system of
equations, in our opinion, lies in using approximate
numerical-analytical methods, since the use of
difference schemes for solving nonlinear differential
equations seems attractive only at the stage of
writing the corresponding difference schemes.
Practical implementation of them is associated with

significant  difficulties both algorithmic and
computational aspects.
The construction of iterative schemes for

numerical-analytical modeling consists of several
stages, the first of which deals with the linear
approximation of the corresponding boundary value
problem. In this case, we begin with the search for a
solution to the equation for the v, — equation (17).

We write the equations (14) — (16) in the form

LW N VA (18)
ot Re r 0
2
§3:1A9+G43E—Nm (19)
ot Re r Oz
%¥=Aw+ﬂ, N, =Yy, No=VvQ
t

Boundary and Initial conditions on the bottom of
rigion afte Laplace transform ve be as follows:



124 ISSN 1990-5548

Electronics and Control Systems 2018. N 3(57): 120-127

1
p+a’ p+a,,

1

—nt/ap °

a

G(p)=

l-e

1 o .
g(f):F by+be "™ +b,cosat+b;/asinat;.
T

Note that the statements of the authors of
numerous publications related to solving the
problem under study, that the equation is solved first
(19) (in the stationary case, this Poisson equation) is
doubtful, since it contains the unknown in the right-
hand side the function Q(u,m,?).

The general scheme for the numerical-analytical
solution of nonlinear equations of mathematical
physics is given in [8], [9].

The equation (18) can be represented in the
following form.

W

}— N (0)
r ()

v
ot

1

_{m

Re 0

In the linear approach we have a parabolic
equation. The use of integral transformations in the
N, 0 and p variables gives a solution

=33

m=1n=0

Vom 'z, ((aw)?,,(cosm).  (21)

In this solution, Z, are the associated

Legendre polynomials.

and }]VWH

m

m . m, d
P (cos(n) = sin"N———
dcosn

1 d_ ,
P =
(%) I [(x

(n=0,1,2,..)).

F, (cosm),

-,

The resulting expression for the azimuthal flow
velocity is used to find the solution in the linear
approximation of the equation (18). After that we
find the solution of the equation (19).

V. SIMULATION OF AORTIC FLOW DYNAMICS

An equation system, which describes the
distribution of fluid in the aorta, is conveniently
presented in cylindrical coordinates. For the
assumption of the existence of the coefficients of
turbulent exchange, the stationary three-dimensional
equations have the form [6]:

10 10 0 10 ou 1 0 ( MKy Ou 0 ou
——(pruu,)+——~ ~pruu. )+ —(pruu )=—— Ll —— |+ — o+ S 22
” al"(p r r) ” a(p(p ¢ r) aZ (p z r) ” a ( cf ar ) r a(p( r a(pJ az[“'ef aZ ) u, ( )
2 2 o(u, / ;O
Su :%_6_p+1 a rl’tefaur +1 a l"t i (uq) r) 2 u +ﬁ l"lefauz )
r r or ror or r OQ or r r@(p 0z or
10 1 6 10 Ou, )\ 10 (MK, 0u,| 0 ou,
——(pru,u + ru i, + ru_u ru, — |+ —— — [+ = —|+S,, (23
5 Pt 1op li{% [1%_ u J} By [rﬁ(uw/ r>j+ 1ou, li{ud (%+ 2”’}2[%- %j
® r roe ror “\rop r r or roe roel “\ore r oz\" 7 roo
10 10 0 10 ou 1 0 (MK, Ou 0 ou
——(pruu)+———~_~pruu_)+—(pruu )=——I/r | = [+ = = 1+S, ., (24
rar(p 2 r@(p(p ott=) az(p 2 r@r( Her érj r@(p( r 8(pJ az[“"f 82) 24)
g 10 Ou 10 Ou 0 ou
S =——+——1|r L4+ —— — +—= — .
P rar( Her az) r@(p(“ef azJ az(“"f 82)
Simulation of twisted streams will be performed 1 o u,
according to the iterative scheme [7]. For this we Ny =p o ‘”hg"‘q) or
present the equation of the components of the speed
of the fluid in the form GL0® L rud e,
r op r°
o, (Lo 100
ot He P op ror Since the Navier—Stokes equation contains a term
R R R relative to pressure, one needs to add another equation
—u od 100 o0d IN,, (25) for closing this equation system. This equation is an
I R . equation with respect to the flow temperature
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8_14 8_w_0 (26)
ox Oz
(ﬁu ou 614)
p|l —+u—+w—
ot Ox 0z
_ [Ou, Qu) B 2 K
Mo o2 ) o 3P
(ﬁu ou 614)
p|l —+u—+w—
ot Ox Oz

B Fw  *w _ﬁ_p_( o) _% 8_1(
Uy ENCIARP 2 P—P.)E 398 5
c (6_T+u6_T+ GTJ A 62—T+62T
Pla e V) e e )
p=pRT.
Then 8_p: 8—T G_p_ 6T

o PR o PR

Given the equation of continuity of the flow (25)
we obtain the following system of equations:

Pl " ") Ylae T

_pol 2 0K
ox 30 ax
a Ve laz) Mlae e
or 2 oK
— ORI _ _Zy
PR— (P—p.)g 3P 5

c p(a—T+ua—T+ 6T) A (62—T+62TJ.
loa e o) Tl o
The solution of the linear part of this system,
taking into account the initial and boundary
conditions, is obtained as: ({=z—-h,, {<€[0,L.],
xell, L)

W (x,60)= > Z,(a ( " ) u(B;u,x)i,e’”"“l‘/’t,

my, 1,

1 o,
Z,(a,,,0)= A [Sin a, G —%COS OLZL,CJ,
u

.
X (x)=——sinp x,
O

wO (x,C,0) = z Zw(ocmw,C)Xw(B;w,x)

my,,l,
= ~ (Vb )t
’ (_Gmw,lw )|:1 -e 4

w
cos ame,

1z

w ”

Zw(a’mw > C) =
w
xR

BT

r(x60= Y Z,(a,, 00X, (B, x)

my Iy

R
Z (o, ,C)= EA cosa,, &,
T
1 r
XT ([317- x) = mCOS Bl,- X.
T

In the first approximation we get

u (5,60 = Y Z, (o X, (B, . )

m u> [l!

UL, ol 04U, 02, , (0]
@)

[UIZ .

w (x,G,1) = Z Z,(a,, ,OX7 (B, ,x)

[w et o, (w2, o2, (0],
(28)

where o, , are self-values of (') with conditions ().

Further approximations are performed according
to a similar scheme. Obviously, the application of
the simplification algorithm leads to errors in the
solutions of the corresponding boundary value
problems. But these errors can be offset by
additional iterations, using relatively simple
expressions of the form (27) — (28). These iterations
do not lead to additional complications of a
computational nature, since they are realized by
similar algorithms, which enables to automate the
process of finding approximate solutions of the
formulated boundary value problem.

At the next iteration, using the found vorticity
expressions in the system of equations (18) and (19),
we proceed to the consideration of the convective
components.

Continue these iterations until the required
accuracy of the solution is achieved. The results of
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modeling the components of the speed of the fluid in
the root of the aorta are presented on Figs 1-3.

After the initial development of the flow at the
entrance to the aorta there is a tendency to spin it
with the further formation of vortices.

Vir=08:z, &}

Fig. 1. Distribution of the longitudinal component
of the speed of the liquid

Fig. 2. Distribution of the azimuthal component

of the fluid velocity

AR \\';}
AT AN
™

Mg

y=z

Fig. 3. Distribution of the radial component
of the fluid velocity

VI. CONCLUSION

In this paper, on the basis of existing work
related to the study of swirling flows in the heart, the
problem of vortex flows in the left ventricle in a
moving coordinate system was first formulated as a

system of nonlinear differential equations in partial
derivatives. To solve this system of equations, an
iterative method has been proposed using integral

transformations in finite limits along the
corresponding coordinates.
Further studies are related to obtaining

numerical-analytical solutions of this system of
equations.

VII. DISCUSSION

The issues discussed in this paper attract the
attention of numerous researchers all over the world.
Despite the large number of works devoted to the
formation of vortex flows in the heart and aorta and
approaches to their study, there are currently no
works that suggest approaches to constructive
solutions to this complex issue.

The proposed work, too, does not pretend to be a
final solution to this problem, but it is the first
attempt to study the edema in the left ventricle of the
heart and aorta, which, according to the author,
should contribute to the diagnosis of heart disease
and the development of recommendations for the
treatment of these diseases.
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€. A. Hacrenko. ocaixxeHHs MMOTOKY KPOBi y rupJjii aopTH

JloCmiKYIOTECS POLECH PYXY KPOBI B aOPTI ITiJl BIUIMBOM 3aKPYYEHHUX ITOTOKIB KPOB1 Ha BMXOI 13 JIIBOI'O IIJIYHOUYKA
cepiyt. ChopMyIIboBaHO 3a1a9y MOJESIIOBAHHS 3aKpYUYEHHMX IIOTOKIB KPOB1 Yy JIIBOMY IIIYHOUKY SIK HEJTIHIHHY KpalioBy
3a7a4y Y BUIVIAAI CUCTEMH TU(MDEPEHIIMHNX PIBHAHD V YACTUHHUX IOX1JIHMX 13 pYXOMHMHU Mexkamu. OTpUMaHo BUpa3u
IS TIOJTSI IIBHAKOCTI ITOTOKY KPOB1 Ta THCKY Yy JIBOMY IIUTYHOUKY. PyX ITOTOKY KpOBi B a0pPTi 111/ BILIHBOM 3aKPy4YEHOT O
IIOTOKY Ha BHUXOJI 13 JIIBOIO IIUTYHOUYKA OMHUCYETHLCS CUCTEMOIO HETIHIMHMUX PIBHSAHL Y YACTHHHUX MOXigHHX. PO3B's130K
miei xpalioBOi 3ajgaui BIALUIYKYETHCS 3a JOMOMOrON0 iTepaliifHOi MpoleaypH, W0 IPYHTYETbCS Ha BUKOPHUCTAHHI
IHTErpaIbHUX IEPETBOPEHE 3a IPOCTOPOBUMHU 3MIHHUMU Ta Yacy.

Koarou4ogi ciioBa: aopra, BUXpOBI IOTOKH; 3aKpyueHi Teuii; piBHsSHHSI HaB’e—Crokca; iHTErpaibHi NEpeTBOPEHHST; JTIBUHA
IIUTYHOYOK.
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E. A. Hactenko. UccnenoBanue noroka KpoBM B KOPHe a0pPThI

HccnenyroTes mpolecchl IBUKEHHST KPOBU B a0PTE IO/ BIMSIHUEM 3aKpy4YEeHHBIX TOTOKOB KPOBU Ha BBIXOJIE M3 JIEBOT'O
xenyaouka cepauna. ChopMyaupoBaHa 3a1a4a MOJEIUPOBAHUS 3aKPy4EHHBIX IIOTOKOB KPOBH B JIEBOM JKEIY0UKe KaK
HEITMHEHHYI0 KpaeByIO 3ajadyy B BHUJAE CHUCTEMbl JU(QEepeHIHaTbHbIX YPAaBHEHHWH B YACTHBIX IIPOU3BOJHBIX C
MOABWKHBIMU TpaHUnaMu. [1oydeHsl BeIpakeHHs U1 TIOJISt CKOPOCTH TIOTOKA KPOBH U JIABJICHHS B JIEBOM JKEITyJTOUKE.
JIBIKeHHe IOTOKa KPOBH B aOpTE€ MOJ BO3ACHCTBHEM 3aKpyYEHHOTO IMOTOKA Ha BBIXOJE W3 JIEBOIO JKEITYyJ04YKa
OITUCHIBAETCS CHUCTEMOH HENMHEHHBIX YpAaBHEHWH B 4YacTHBIX IIPOM3BOJHBIX. PelleHwe 3ToH KpaeBOW 3ajauu
OTBICKMBAETCSI C TIOMOINBIO HTEPAMOHHOM TPOUENYpbl, OCHOBAHHOW Ha WCIIOJB30BAaHUM HWHTETPAJIbHBIX
npeoOpa3oBaHuii 10 MPOCTPAHCTBEHHBIM IIEPEMEHHBIM M BPEMEHHU.

KnaroueBble cioBa: aopra; BUXpEBbIe IOTOKH; 3aKpydeHHbIE TedeHus; ypaBHeHus HaBbe—CTOKCa; MHTErpajibHbIE
npeoOpa3oBaHMUs; JIEBBIN KeTyJ0ueK.

Hactenko EBrenmii ApHonbaoBu4. JlokTOp OHOJIOrMYECKMX HAyK, KaHTUIAT TEXHUYECKHX Hayk. IIpodeccop.
3aBenyronmii kaheapoii.

Kadenpa OuomMenuuHckoil KuOepHeTHKH, HalMOHANBHBIA TEXHUYECKUH YHHBEpCHTET YKpauHbl «KueBckuit
MOJIUTEXHUUECKUI NHCTUTYT uM. Urops Cuxopckoro», Kues. Ykpauna.

Oo6pa3oBanue: KueBckuil MH)XEHEPHO-CTPOUTENbHBIN HHCTUTYT, Kues, Ykpauna, (1977).
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