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Abstract—The aim of the paper is the mathematical modeling of nanotechnology problems of navigation
based on generalizations of the Picard method. The Picard method for solving systems of ordinary
differential equations, and its extensions on the basis of hyperlogarithms and iterated path integrals, are
presented. The derivation of the Picard-Fuchs differential equations for connections in bundles on
schemes is given. The results can be used to study the corresponding differential equations and to
calculate the Taylor coefficients of (dimensionally regularized) Feynman amplitudes with rational

parameters.
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equation; iterated integral; hyperlogarithm;
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I. INTRODUCTION

It is considered the Picard method for solving
systems of ordinary differential equations (ODE)
and its generalization on the basis of iterative
integrals. The proposed methods can be used to
solve based on (nano) technologies of selected
elements of air navigation problems [1]-[6], [18].
Along with selected navigation problems, it includes
some of the tasks of sensors, amplifiers, modulators,
lasers.

The proposed methods are based on Picard's
method [7]-[9], and are also a far-reaching
development of this method.

In the framework the general scheme of Picard's
method is presented. After that we recall the Lappo—
Danilevskii's matrix method and the extension of the
Picard method. The derivation of the Picard-Fuchs
differential equations for connections in bundles on
schemes is given. Then we introduce iterated path
integrals by Parshin, Chen, and others [10], [11].
These integrals can be regarded as a far-reaching
development of Picard's method. Next multiple
polylogarithms are presented. Multiple zeta values
and multiple polylogarithms are applied under
Feynman quantization. Such quantization is
necessary for the investigation (radiation) of
plasmon-polaritons and another quantum effects used
in some sensors, modulators and other nano devices.
By Broadhust and Kraimer the Tailor coefficients
(dimensionally regularized) of Feynman amplitudes
with rational parameters are multiple zeta values (see
[12]-[14]). Feynman amplitudes give the coefficients
of the perturbation theory series.

II. ELEMENTARY PICARD METHOD

Let M be a differentiable manifold and 7, is its
tangent bundle. A vector field on M is the mapping
X:M —T,, that satisfies the condition

noX =id,,, where m is the natural projection
T, >M.
Example

Consider the differential equation X =2x, £,=0.
The Picard method in this simple case has the
form: let x,(z,)=1,

5 =1+2[ dr=1+21,

X, =1+2J;(1+21)d1=1+2t+2t2,,

47
X =142 (14 204 20 )dv =14 20428 + 7,
3 0 3

n.n

x, =1+264267 +-+

2

n!

. 2,
limx, =e "
n—»0

More generally, let C:M —>M Dbe the
contraction mapping of a metric space M . Let
M=R"" and let x=wtx),xeM, be the
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differential equation, where v(¢,x) is the vector field

in some domain of the extended phase space R"".
For n-dimensional vector x from M let
¢@:t— xand put

(€D =x,+ [ v(r.0()dr.

This gives the vector form of the Picard method.

III. LAPPO-DANILEVSKII MATRIX METHOD
Let x= (xl,...,xn)T ,
x=A(t)x, xeR",
be a system of ordinary differential equations with

variable coefficients. Here A(f) is a nxn matrix of

continuous functions defined on an open subset U
of the real line. In the framework of the matrix
valued solutions and fundamental matrices of the

system let #{, €U and X,=X(t,) be the initial

condition. In matrix notations the differential
equation is equivalent to the integral equation

X(1)-X(t,) = j A(D) X (1)d.
In this case the Picard method has the form
X . (O=X,()+ j A()X,(V)dt, n=0,1,....
By the Liouville formula
det X (¢) =exp J.t: Sp A(t)dt,

where Sp A(7) is the trace of A(7).

Put #,=0 and let X(¢,)=E where E is the unit
matrix. Let now A(t) be the matrix with rational
coefficients.

Under the solution of the Poincare problem [15]
on Fuchsien type differential equations Lappo—
Danilevskii [7] has developed the matrix method and
introduced  hyperlogarithm. By  definition
hyperlogarithms are functions of the form

: dt
la.2)=] —,
0t—a
z dt
la,,...,a,; z)=J. l(a,,...,a,; 1),
01t—aq
: dt v dt .y dt
l(a],...,am;z)zj ! j 2 J m
0 — 0 — 0 —
T, —q T, 4, T, —4a,

Put

Then
z _ 7 log(1—1)dt
JO (00(0] _JO t ’

IV. PICARD-FUCHS DIFFERENTIAL EQUATIONS

An interesting class of differential equations can
be constructed from elliptic curves. It is well known
that the Weierstrass function ¢ and its derivative

@' satisfy the differential equation
(') =40’ —60c,p —140c, .

A. Fuchsian type differential equations

Let K be the field of real or complex numbers,
K(U) be the field of meromorhpic functions on U
and H(U) be the ring of holomorphic functions on U.

The Fuchsian differential equations has the form

W a3+, (09 =0,

where a,(1)e K(U). If t/a,(t)e H{U) then it is
called the Fuchsian type differential equation.

Below we use elements of scheme theory [13],
[16], [6]. In this framework let S/k be a smooth
scheme over a field £, U be some element of an
open covering S, O, be a structural sheaf on §,
[(U,0y) be a section of Og on U .

For a one-dimensional sheaf of germs of
differentials Q; ,; and a coherent sheaf /' on §, a
connection on a sheaf /' is called a homomorphism
of sheaves

ViF>Q,, ®F,
such that if fel'(U,0y), g€l'(U,F), then

V(/g)=/V(g)+df ®g.
Let f:X—>S, S=SpecB, X =8pecA, be the
morphism of smooth affine schemes over « .
Example 1
Consider the elliptic curve y*=x’+¢. In this
case B=k[t,t™'], A=B[x,y]/(y*-=x’ —t). The

invariant differential on this curve is of the form
o=dx/ y, and, after calculations with differentials,

we obtain the Picard-Fuchs differential equation
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do 1 . . .. .
—+—m»=0, which describes how this invariant

dt 6t
differential varies in the family.

Let
X=A()X,

be the Fuchsian type differential equation in matrix
notations.

It is possible to generalized the previous
considerations.
B. Integration of connections

Recall that the cochain complex

(K',d):{KO ¢ yK'—LyK?P—1¢ >}

in the category of abelian groups is the sequence of
abelian groups and morphisms d:K” — K”*' such
that dod =0. Let Q;/k be a sheaf of germs of i-
differentials, F  the coherent sheaf on §,
Via® =doa® f+(-1)aAV(f),

a €, . Then homomorphisms V, V' define the

where

sequence of homomorphisms
F>Q,, ®F >Q; ®F > .

The connection is integrable if the last sequence
is a complex.

Proposition. The next conditions a), b) are
equivalent: a) the connection V is integrable; b)

VoV'=0.

Example 2

Let F'=0s be the structural sheaf on a scheme
S . Then

V:0;—>Q, ®0, Qg ,,

and so V(f)=df . This connection is integrable,

since the exterior differentiation operator d defines
a de Rham complex:

O, > Qf, ®0, > Q% ®O0; —>---.
Example 3
Let y* =x(x—1)(x—A) be the Legendre family
of elliptic curves over the field of complex numbers
C with A e C—{0,1} . The Picard—Fuchs differential
equation
>  (2t-1)d 1
- o+ —o+ Q)
dt t(t—1) dt 4t(t—1)

9

of the family encodes many properties of such a
family of elliptic curves.

V. ITERATED PATH INTEGRALS

Here we follow to [10], [11]. Let C be the
complex plane and f;(z) be the holomorphic
function on C. Let f(z)dz be the differential of

the first kind on C. Let S be a Riemann surfaces

and w be the differential of the first kind on §.
Parshin has considered iterated integrals of this type
on Riemann surfaces [10]. Chen [11] in some
analogy with [7] for smooth paths on a manifold M
and respective path spaces have investigated iterated
(path) integrals. For differential forms ®,,...,®, on

M he has constructed the iterated integrals by
repeating 7 times the integration of the path space
differential forms (and their linear combinations).
Chen [11] has denoted the iterated integrals as

J.oalv-'-(o, and set J.(Dlv-woa,:l when =0 and

J.oalv -, =0 when » <0. More generally iterated
integrals are path space differential forms which
permit further integration.
VI. MULTIPLE POLYLOGARITHM
Define polylogarithm

)
Lim (Z) = Zznnfm .
n=1

Example 4

2
T

Li,(1)=C(2)=—,
6
where C(s) is the Riemann zeta function.

Example 5
In the framework of hyperlogarithms we have:

Liz)=-] o,

= J = Lo

Multiple polylogarithm is defined as

k k

1 P
c..Z
Z; »

.....

n
0<kj<:--<k, k]nl b ‘kpp

Example 6

The special value of the multiple polylogarithm is
the multiple zeta value of the weight w and the
depth p [12], [13], [17]:

Lim,...,np (1551) = CJ(nla---:np) .
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Feynman integrals and amplitudes and their
representation by multiple polylogarithms and
multiple zeta values will be presented elsewhere.

VII. CONCLUSIONS

It is given vector and matrix extensions of the
Picard method. These extensions are based on the
Lappo—Danilevskii's matrix method and on iterative
integrals. Picard-Fuchs differential equations and
methods of their representation by connections on
algebraic varieties are analyzed. For the applications
to Feynman integrals and amplitudes multiple
polylogarithms and multiple zeta values are
presented. Numerical examples are included.
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M. M. I'nazyHoB. MaTeMaTH4He MOJeTI0OBaHHs (HAHO) TEXHOJIOTIi MOB’A3aHMX 3 3a]aYyaMM HaBirauii Ha OCHOBI
y3arajbHeHb MeToaa Ilikapa

Po3risiHyTo MateMaTHYHE MOJENIOBaHHS (HAHOTEXHOJIOTIYHMX) 3ajady HaBiralii Ha OCHOBI y3arajbHEHb METOLY
[Mikapa. IlpencraBieno meroxn Ilikapa mis po3B'si3yBaHHS CHUCTEM 3BHYAHHUX NU(EPEHI[aIbHUX PiBHSIHb Ta HOTrO
PO3ILIMPEHHs Ha OCHOBI rinepiorapudMiB Ta iTepoBaHux iHTerpanis. HaBeneHo BuBeneHHs qudepeHIiadbHUX PiBHIHB
[Mikapa—®ykca 1151 3B°sI3HOCTEN y MyYKax Ta B pO3LIAPYBAHHIX Ha cXxeMax. Pe3ynbTaTé MOXyTh OyTH BUKOPHCTaHI IS
BUBYEHHS BIANMOBIMHUX Ju(depeHmianbHUX pIBHSIHBR Ta Uil po3paxyHKy KoeoimieHnTiB Teinopa (po3mipHO
perynsipuzoBanux) amIutityn deitHMaHa 3 palioHaILHUMH MTapaMeTpaMH.

KarwuoBi caoBa: meron [likapa; 3BuuaiiHe audepeHIiiaibHe pPIBHSHHS; ITEPOBAHMN iHTErpai; rinepiorapudm;
HAaHOTEXHOJIOTIT; nudepenmianbae piBHsHHS [likapa—Dykca; KpaTHe 3HAYCHHS J3€Ta.
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H. M. I'ntazynoB. MaTemaTnieckoe Mo/ieJiIupoBaHue (HAHO) TEXHOJIOTU CBSI3AHHBIX C 3aJa4YaM¥i HABHTAIMH HA
ocHOBe 00001eHuii MeTona Iukapa

PaccmotpeHo MaTemaTtnueckoe MOJEIHpOBaHHE (HAHOTEXHOJOTMYECKHX) 3ajad HAaBHTallMM HAa OCHOBE O0O0OIIEHMH
Mmerona [Tukapaa. [lpusogsrcs meron [Tukapa st penieHust cUCTeM OOBIKHOBEHHBIX AU QepeHIHaNbHBIX YpaBHEHUH
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Teiinopa (pa3MepHO-peryIsIpu30BaHHBIX ) aMIUIUTY1 DelfHMaHa ¢ pallMOHAILHBIMH ITapaMeTpaMu.

KarwueBsie ciaoBa: meron [lukapa; oObikHOBeHHOe quddepeHnnansHoe ypaBHEHHE, WUTEPHPOBAHHBIA WHTErpal;
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