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Abstract—Nowadays an anxiously important problem is the creation of the low-cost gyro-free inertial
navigation systems. That is why we focus primarily on linear accelerometer to avoid gyro using. The
problem of inertial navigation accuracy with using of accelerometers in inertial measurement unit are
discussed. It is shown that a strict successive analysis of accelerometer measurement procedure makes it
possible to understand probable new source of errors in the value estimation of the disturbing force
magnitude. If do not take into account these new possible errors any self-adjusting system of an airplane
may be functionally unreliable. These errors arise primarily when temporal duration of disturbing force
is less than some critical time t, which depends on the given characteristics of an aircraft Inertial
Navigation System and aircraft itself. The method of finding t is proposed. A presence of a damping force

in the proof mass motion equation is examined.

Index Terms—Inertial navigation system; accelerometer; wave equation; disturbing influences Lagrange

function; inertial management unit.
[.  INTRODUCTION

Committee of ICAO on future navigational
systems (FANS — Future Air Navigation System)
made decision about the obligatory use of satellite
navigation in combination from inertial navigation
systems (INS) [1]. Nowadays many researchers all
over the world are concentrating their efforts in
order to create gyro-free INS based on the usage of
accelerometers only [2]. There are at least two
reasons of this activity. The 1st reason is a growth of
the MEMS - technology, producing low-cost
sensors with enhanced accuracy characteristics, thus
facilitating creation of ABSINS. The 2nd reason is
the emerging of some difficulties of attitude
determination based on gyros application in the case
of navigation and control of the rapidly rotating
moving vehicle (MV) and the large accelerations
values.

The problems of navigation accuracy whose roots
lay back in the mid-twentieth century should be
extended now to meet the new challenges. Amongst
these well-known challenges it is necessary to
mention enormously high frequency of flights,
continuously disproving environmental conditions,
problems with airport landing. In the first position
the terrorist incidents in civil aviation should be
placed which include aircraft hijacking, airlines
bombing, terrorist attacks on airports. Common
future of all above mentioned items is the extremely
short segment of time available for checking out the
health of the avionic system on the flight line or on
the ground. Namely, this common point makes it
possible to gather consideration of all these distinct

situations within one theoretical framework and
elaborate mathematical tools to construct admissible
diagnostic procedures [3] — [5].

II. ACCELEROMETER PRINCIPLE

Knowing that the main aim is to focus primarily
on linear accelerators, let us very shortly recollect
the main results of previously considerations. The
very imported part of INS is so called Inertial
Measurement Unit (IMU), which consists of
accelerometers and gyros. Let us restrict to exam
accelerometer only. The very short review of results
of article [5] may be present as follows.

In the any local inertial frame (LIF) the total
disturbing external force F** according to the center-
of-mass theorem gives birth to the acceleration a. of
airplane

Fext

4 == (1

where, M is airplane instant total mass which
includes masses of all internal devices and instant
amount of fuel. Of course, it is trivial approximate
result ignoring after all the continuous descent of
fuel. A strict successive analysis of accelerometer
measurement procedure makes it possible to derive
the next exact motion equation for accelerometer
proof mass m. according to some selected direction

F(t) = —k,AL(t) + kAL () — ma., , )

where k;,Al(¢), stand accordingly for elasticity
factor and a change in length of right spring, index
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“2” means the left spring. For simplicity let us set
ki = ky = 2k, so that k means the elasticity of whole
spring as a result of the consecutive spring
connection. Under condition /; + /, =/ = const have
Al
Al =|A12|=7,
Substitution of these relation and as well as (1) into
(2), in the case when F(¢) = 0 gives

dl] = - dlz, SO AIIZ—AIZ;

mF ext

Al =
2Mk

)

Condition F(¢)=0 means that A/ corresponds to

the proof mass equilibrium position.

But absence of forces means absence of
accelerations but not of velocities. How
accelerometers proof mass approaches to its halt?
How its position depends on time? The answers on
these questions may describe correlation between
duration of influence and data for self-adjusting
system and somehow avoid extremely high errors in
the estimation of the disturbing force. Purposely
temporarily ignoring damping to make clear some
principal points and using the work-energy theorem,
also known as kinetic energy increase theorem, for
the change in the kinetic energy AT it is obtained

AT = jo“(”(zkm(z) — ma )dx. 4)

Suppose that accelerometer mass approaches to
its halt at time A = 1, which means AT = 0, so (4)
may be rewritten as

Al(t) Al(t)
2]0 kAI(t)dx — mjo ma,dx=0. (5)

After integration taking into account that
Al(t) = x and integration using all above mentioned
relations the simple equation is written

k(Al(t))' —ma,Al(t) =0. (6)

Equation (6) has two solutions: first Al(t) = 0
that means the initial position, when disturbing
forces begin to act and second

ma. mF™
Al(t)=—%= , 7
(v) . R (7

from which it is possible to derive relation which
defines position of an accelerometer proof mass,
where it approaches to its halt, noting that Al(t) =
2Al,where k stands for elasticity factor of proof mass
spring and Al corresponds to its equilibrium
position. It’s clear that the accelerometer proof mass
vibrates between these two positions. Obviously, it’s
necessary to introduce damping which approaches

proof mass to it’s equilibrium position. Suppose now
that time segment At of disturbing force F** action is
less than At < 1, i.e. In this case using in all existing
IMU schemes relation (3) is incorrect and there are
enormously large errors in evaluating of F°*. So, let
us should return to the equation (4) in which at this
time AT # 0 and have opportunity to find answer the
questions what should be after the moment of a
disappearance of a disturbing force F*' and how it
is possible to properly evaluate the F*** in this case.
After the moment when external influence become
extinct accelerometer proof mass m continues to
move. For this case methods of estimation of proper
time duration are elaborated in [5], where by means
of application of Lagrange function was found that
At may be evaluated as

m dx
= /— . 8
Al 2'[\/E—U(x)—mac o )

andEzmx

mx
where, U = n +max+U.

Lagrange function L in accelerated frame has the
form [7]:

-2
mx

L= -ma,x-U, )

E and t, are integration constants they play role of

fitting parameters, which allow apply this quite
general framework to every given real data.

III. ACCELEROMETER WITH DAMPING

The previous consideration shows the extremely
important role of damping forces in the realization
of any practically significant scheme to construct an
accelerometer. To study in details these problems let
us recollect widely known facts of oscillation motion
theory. The considered case differs from classical
theory of oscillation only in the selection of
equilibrium position. To the strict analysis of this
very impotent point will be devoted future
publications. The equation when damping forces are
present has the form [6]

(10)

where, m denotes accelerometer proof mass; k stands
for elasticity factor; r is a constant called the
resistance coefficient. This equation can be rewritten
as

mx = —kx —rx
b

(1)

¥+ 2Bx + opx =0,

where 2p=_, cof):k.
m m

Introduction of the function x = exp (Af) into (11)
leads to the characteristic equation
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A +2BA+ ;) =0. (12)

The roots of this equation are
A =—B+B’— w5, (13)
Ay =—B—+B — . (14)

When the damping is not too great (at f < ) the
radicand will be negative. Let us write it in the form
(im)’, where o is a real quantity equal to

2 2
o, —pB°.

(15)

Here, the roots of the characteristic equation will be
as follows:

A =-PB+in, A, =-pf-io. (16)

The general solution of (6) will be the function

x = C]e(—ﬁ+iw)t + Cze(—ﬁiiw)t — e—ﬁz‘ (C]eiwt + Cze—iwt)

(17)
or
x = A,e " cos(wt +a), (18)
where o can be determined by means of expressions
C, zge’“, C, =§e"°‘. (19)
The graph of (18) is shown below (Fig. 1).

Tl

Fig. 1. Oscillation with damping

IV. THE RATE OF DAMPING

The rate of damping of oscillations is determined by
the quantity B = 7/2 e defined as the damping factor.
Let us find the time t during which the amplitude
diminishes e times. By definition, e™ = e ', whence
Bt = 1. Consequently, the damping factor is the
reciprocal of the time interval during which the
amplitude diminishes e times. In analogy with
i

0 - (20)
@,

The period of damped oscillations is
2n
o, =B’ '

When the resistance of the medium is
insignificant, the period of oscillations virtually
equals Tp = 2m/w,. The period of oscillations grows
with an increasing damping factor.

The following maximum displacements to either
side (for A, A", A", etc.) form a
geometrical progression. Indeed, if A" =4, exp (-p?),
then A"=4, exp [-B( + T)] = A exp (-BD),
A" = dq exp [-B(2T)] = A" exp (BT, etc.

In general, the ratio of the values of the
amplitudes corresponding to moments of time
differing by a period is

AW _ pr
At +T) '

T= Q1)

example

(22)

This ratio is called the damping decrement, and
its logarithm is called the logarithmic decrement:

A _gp 23)

A=ln——2 =
At +T)

To characterize an oscillatory system, the
logarithmic decrement A is usually used. Expressing
B through A and T in accordance with (14), the law
of diminishing of the amplitude with time can be
written in the form

A= 4, exp[—ﬁtj. (24)

T

In the interval during which the amplitude
diminishes e times, the system manages to complete
N, = v/T oscillations. Let us find from the condition
exp (—At/T) = exp (-1) that At/T = AN, = 1. Hence
the logarithmic decrement is the reciprocal of the
number of oscillations completed during the interval
in which the amplitude diminishes e times An
oscillatory system is often also characterized by the
quantity

T

0 A nN,, (25)
called the quality, or simply the O, of the system. As
can be seen from its definition, the quality is
proportional to the number of oscillations N,
performed by the system in the interval t during
which the amplitude of the oscillations diminishes e
times.
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Accordingly, the energy of the system in damped
oscillations diminishes with time according to the law

E=Ee™", (26)

(Eo is the value of the energy at ¢ = 0). Time
differentiation of this expression gives the rate of
growth of the system's energy:

dE 5
— =-2BE,e " =-2BE.
o PE, p

By reversing the signs, is found the rate of
diminishing of the energy:

dE
- _2BE .
a P

27

(28)

If the energy changes only slightly during the time
equal to a period of oscillations, the reduction of the
energy during a period can be found by multiplying
(28) by T:

—AE =2BTE, (29)

(AE stands for the increment, and — AE for the
decrement of the energy). Finally at the relation is
obtained

E _©Q
(-AE) 2r’ 30)

from which it follows that upon slight damping of
oscillations, the quality with an accuracy up to the
factor 27 equals the ratio of the energy stored in the
system at a given moment to the decrement of this
energy during one period of oscillations.

It follows from (21) that a growth in the damping
(Fig. 2) factor is attended by an increase in the
period of oscillations.

At B = w the period of oscillations becomes
infinite, i.e. the motion stops being periodic. At, >
o the roots of the characteristic equation become
real, and the solution of the differential equation is
equal to the sum of two exponents:

—A -\
x=Ce"" +C,e ™.

€2))

Here C;, and C, are real constants whose values
depend on the initial conditions:

[on X, and V,= (X),].

The motion is therefore aperiodic — a system
displaced from its equilibrium position returns to it
without performing oscillations. Previous graph
shows two possible ways for a system to return to its
equilibrium position in aperiodic motion. How the
system arrives at its equilibrium position depends on
the initial conditions.

T

Nz— ¢

Fig. 2. Aperiodic motion

The motion depicted by curve 2 (Fig.2) is
obtained when the system begins to move from the
position characterized by the displacement x, to its
equilibrium position with the initial velocity v,
determined by the condition:

o] > o (B VB @} ).

This condition will be obeyed when a system
brought out of its equilibrium position is given a
sufficiently strong impetus toward it. If after
displacing a system from its equilibrium position it
is released it without an impetus (i.e. with vy = 0) or
impart to it an impetus of insufficient force such that
vo is less than the value determined by the condition
(32), the motion will occur according to curve [ in
graph (see Fig. 2).

(32)

V. CONCLUSIONS

A strict successive analysis of accelerometer
measurement procedure makes it possible to
understand probable new sources of errors in the
value estimation of the disturbing force magnitude.
These sources include also the character of the rate
of damping. A growth in the damping factor is
attended by an increase in the period of oscillations.
At B = o the period of oscillations becomes infinite,
i.e. the motion stops being periodic. At, B > m, the
roots of the characteristic equation become real. The
motion is therefore aperiodic — a system displaced
from its equilibrium position returns to it without
performing oscillations. How the system arrives at
its equilibrium position depends on the initial
conditions and all these circumstances are the
probable new sources of additional errors. The
consequences of such errors may be anxiously
substantial. If don’t take into account these new
possible errors any self-adjusting system of an
airplane may be functionally damaged or become
almost unreliable. These errors arise primarily when
temporal duration of disturbing influence is less than
some critical time 1, which depends on some
characteristics of an aircraft INS, and aircraft itself.
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O. A. IBaHnoB, 0. A. Onanaciok TouHicTh iHepuiiiHOI cucTeMHn HaBiramii Ta akcejaepoMeTps 3 JeMnyBaHHAM
Ha choromni Iyxe Ba)JIIMBOIO MpPOOJIEMOIO € CTBOPEHHS HU3BKOBAPTICTHUX IHEPIIMHMX HaBIrallifHUX CHCTEM IO
0a3yI0ThCsl HA BUKOPUCTAHHI JIHIIE akceraepoMeTpiB. OOTOBOPIOIOTHCS MUTAHHS TOYHOCTI TAKUX HABITaIliiHUX CHCTEM.
[NokazaHo, 110 MOCIIOBHUI NpelM3iiHIKA aHami3 (GYHKIIOHYBaHHs aKceJIepoMeTpa BKa3zye Ha HOBI MOXIIUBI JpKeperna
MOXWOOK IpH OIIHIOBAaHI BENWYMHH 30YpIOlOYoro BIUIMBY. HeBpaxoByBaHHS Takux (HDakToOpiB IMPHU3BOIUTH JIO
(dyHKIIOHATIBHOT HEeHaiiHOCTI cucTteMu HaBiraiii. Po3risHyTo eexr HasBHOCTI KoeillieHTy 3aracaHHs y piBHSHHI
PyXy IpoOHOI MacH aKceaepoMeTpa.
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A. A. HBanoB 0. A. Onanacwok. ToyHOCTH HMHEPHMAJBHOI CHCTEeMbl HABUIAIMM W aKceJepoMeTpsl ¢
AeMnpupoBaHUEM

B Hactosiiee BpeMsi BayKHOH NpOOJIEMOH SIBJISIETCS CO3JIaHME HEJIOPOTMX WHEPIIMOHHBIX HABHUTAIMOHHBIX CHUCTEM
OCHOBAHHBIX Ha UCIIOJIb30BAHUU TOJILKO akcesepoMeTpoB. OOCYKIar0TCsi BOMPOCH TOYHOCTH TAaKUX HABUTAIMOHHBIX
cucreM. [lokazaHo, 4TO MOCIENOBATENbHBIA NPEIM3NOHHBIN aHauN3 (YHKIMOHMPOBAHMS aKCEIepOMETpa IMO3BOJISET
OOHapY)KUTh HOBBIE BO3MOXKHBIE MCTOYHUKU IOTPEITHOCTEH B OIIEHKE BEJIMYMHBI BO3MYIIAIOMIETO BO3JCHCTBUSI.
UrnopupoBanne 3THX (AKTOPOB MOXET TMOBIUATH Ha (YHKIMOHANBHYIO HAJEXKHOCTh CHUCTEMBbl HaBUTaAIU.
PaccmorpeH ¢ dext Hammuus KodpPHUIMeHTa 3aTyXaHus B YPaBHEHNUH JIBIDKEHUsI TPOOHOI Macchl akceIepoMeTpa.
KiroueBble cjioBa: HHEPLUOHHAS CHCTEMa HABUTAI[MK; BOIHOBOE YpaBHEHHE; BO3MYILAIOIINE BO3ACHCTBHS.

HNBanoB Asekcanap AnapeeBuy. bakanasp.

Kadenpa aBuaimoHHBIX KOMIIBIOTEPHO-MHTEIPHPOBAHHBIX KOMIUICKCOB, ¥ YeOHO-HAYYHBIA HHCTUTYT HH()OPMAITHOHHO-
JIMaTHOCTUYECKUX cUcTeM, HalmoHampHBIA aBUAlIMOHHBIN yHUBEpcUTeT, Kue, Ykpauna.

O06pasoBanue: HarmonansHbI aBUalMOHHBIA yHUBEpCcUTET, Kues, Ykpanna, (2017).

Hampasnenue HayqHOMN JesITeNbHOCTU: aBTOMATH3alIUsl, a3pOHABUTaIIHSI.

E-mail: flash199699@gmail.com

Onanaciok FOpuii Apuenosuy. Crapuinii npenogaBartensb.

Y4eOHOo-Hay4YHbIH UHCTUTYT HH(OPMAaIIOHHO-INAarHOCTHYECKUX CHCTeM, HallmoHaNbHbBII aBUAllMOHHBIA YHUBEPCUTET,
Kues, Ykpaunna.

O0pasoBanue: HanmonanwsHelii yauBepcuret uM. Tapaca llleBuenko, Kue, Ykpauna, (1973).

HamnpaBnenue HayqdHOH NESITENBHOCTU: TEOPHS TSATOTEHUS U 00Iasi TEOPUSI OTHOCUTEIBHOCTH, acTpodu3nKa 1
KOCMOJIOTH$l, PENSATUBUCTCKAs JUHAMUKA, a3POHABUTAIIH.

Konugectro myOnukanuii: 58.

E-mail: yuriy.opanasiuk@gmail.com



