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I.  INTRODUCTION 

The variational principle of entropy maximum al-
lows us to find the most probable system configura-
tion, and this is precisely its macrostate, which can 
be reconstituted by the maximum number of distinct 
microstates. Having appeared in the depths of statis-
tical physics, this principle soon became applicable 
in other fields of economic, humanitarian, and natu-
ral sciences.  

However, not everybody considers such borrow-
ing valid. Many physicists are very distrustful to the 
idea of using the entropy maximum principle for 
such objects kind analysis. Although to ignore the 
examples of successful application of this principle 
for the analysis of non-physical systems is quite 
difficult. “Non-physicists” treat it as an especially 
popular since Janes formalism appearance [1], which 
allows calculating a conditional entropy maximum 
as an integral criterion of the most probable configu-
ration of the macrosystem. 

II.  REVIEW 

The objections of physicists, who have been 
growing on Boltzmann and Gibbs ideas, are suffi-
ciently substantiated. Statistical mechanics considers 
in general a priori uniform probability systems, 
where each single element has the same initial prob-
ability of all phase space cells settlement that in turn 
determines the equal probability of all possible mi-
crostates of the system realization. In addition, such 
a limitation as a condition of a priori equal probabili-
ty of microstates is the main postulate of statistical 
physics [2] – [5]. 

However, this “convenient” characteristic is not 
always typical for the above-mentioned non-physical 
macrosystems. For them the use of a priori equal 
probability hypothesis is often simply invalid. A pri-
ori asymmetry of phase cells settling conditions is 
explained by the fundamental inability of these sys-

tems to be isolated. Typically, each of them with cer-
tain necessity is included into the scheme of a causal 
interaction with many other macrosystems, mutually 
distorting the conditions of their formation. For ex-
ample, an economic system cannot exist outside so-
cial or political system, and demographic system 
cannot be isolated from economic or environmental 
system. 

An asymmetry phenomenon of a priori condi-
tions and hence of the inequality of a priori micro-
states probabilities are just not considered by many 
authors as usual.  When studying the complex ob-
jects (for example, in economics, in case of deriving 
the law of social incomes distribution [6], [7] there 
is used, mainly traditional entropy schemes, without 
changes, borrowed from statistical mechanics. 
Equally, such comment can be attributed to other 
existing entropy systems modeling attempts: trans-
port [8], ecological [9], social [10]. 

The aim to use the entropy principle reasonably 
for macrosystems of different nature requires a gene-
ralization of traditional statistical entropy form. Such 
“corrected” function should take into account not 
only a uniform (as Boltzmann entropy), but also an 
arbitrary distribution character of a priori probabili-
ties, stemming from the mutual influence of macro-
systems. 

The purpose of the paper is to find and substanti-
ate the more general function for an extended range 
of macro systems analysis compared to the statistical 
entropy (not limited by the requirement of a priori 
equal probability hypothesis); “Complex Systems” 
and “Macrosystems” expressions are not classified 
as established. In the paper, they are considered as 
equivalent and related to “Statistical Systems” name, 
which is defined in a Physics Encyclopedia [11] as 
the sum of a large number of particles that are stu-
died by the methods of statistical physics. 

Aiming to find something common, which is in-
herent in most of considered macrosystems, we can 
note, that they all usually are the objects, where on 
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the final set of “agents” there is distributed a limited 
variety of “resources” [12], [13]. For example, 
among the gas molecules an energy is distributed 
and among the galaxies – their weight and among 
the cities – their inhabitants are distributed and 
among the people – their material goods and among 
the election candidates – their voters, etc. Therefore, 
the expressions like “agents” and “resources” are 
useful to be used for the analysis of some abstract 
macrosystem, which could be applied to a wide 
range of tasks. 

Both of these expressions are “interchangeable.” 
People are looking for the capital, but also the capi-
tal is “looking” people. Status of such system agents 
depends on the ratio of minimum parts of their rea-
sonable fragmentation. For example, in social geo-
graphy “the agents” are the cities, and the population 
is “the resources”. At the same time, the inhabitants 
of these cities can be considered as “agents” of such 
“resources” as square meters of housing. 

III. PROBLEM STATEMENT 

We can also consider the general case when N  
elements are distributed among M  cells. Let one of 
possible macrostates of such system be implemented 
with distribution in cells, respectively 1 2 Mn ,n ,...n  

(provided 
1

M

i
i

n N


 ). The number of combinations 

of such distribution option implementation, i.e. the 
statistical weight of relevant macrostate, is equal to 
the value of the polynomial (more precisely,        
“M-nomial”) index of N th degree, which can be 
calculated using D. Bernoulli formula 
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M

N !W ( n ,n ,...n )
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 .              (3) 

This macrostate probability is equal to 
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here  1 2 MP : p , p ,...p  is a variety of a priori proba-
bilities.  

In the particular case, when a priori probabilities 

are equal, that is 1constip
M

  , the expression (4) 

takes the form 

1 2
1 2

! 1( , ,... ) .
! !... !M N

M

NQ n n n
n n n M

          (5)  

Speaking about the instantaneous state of the sys-
tem with a large number of interacting elements, it is 

possible to operate only probabilistic concepts.  
Here, along with individual a priori probabilities ip  

and probabilities of microstates 
1

i
M

n
i

i

p

 , an integral 

characteristic of the system is allocated - the proba-
bility of its macrostate 1 2 1 2( , ,... ; , ,... )M MQ n n n p p p . 
Entropy is the characteristic reflecting that value. 
However, not reflecting in full, as it would be shown 
hereafter. 

Although Boltzmann entropy is considered a 
probability function of the system macrostate, it is 
written (6) through the statistical weight W , which 
is often named as thermodynamic probability. How-
ever, W  is not normalized in the classic sense and is 
not a probability. Normalized value is the probabili-
ty of the macrostate Q . To be sure, it is enough to 
sum (4) and (5) expressions by the total number of 
macrostates:  
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Essentially, the desired system macrostate proba-
bility function should depend on the probability of 
macrostate Q , but not of the statistical weight W .  

The truth is that this comment is not fundamental 
for Boltzmann entropy obtained subject to equal a 
priori probability of microstates (constant multiplier 
1 NM  in equation (8) may be put before the sum-
mation sign). However, as it is seen from (7) expres-
sion, in more general case of unequal a priori proba-
bility, the replacement of the macrostate Q  proba-
bility into the statistical weight W  is not fundamen-
tally allowed. 

IV. DEVELOPMENT OF ENTROPY CONCEPTION 

Renunciation of the postulate of equal a priori 
probability leads to that instead of the expression (5) 
for macrostate Q  probability, it is needed to write 
“complicated” by a priori probabilities 1 2 Mp , p ,...p  
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expression (4). In this case, the statistical weight 

1 2 M

N !W
n ! n ! ...n !

  already “has no right” to deter-

mine independently the probability of the macros-
tate, as it was earlier, when 1 2 Mp , p ,...p  were equal. 
Therefore, it is not enough even classical Boltzmann 
entropy S lnW , to characterize independently the 
probability of such a system macrostate, where the 
postulate of equal a priori probability “does not 
work” already. Nevertheless, what should be in-
stead? 

As the required function instead of the entropy 
lnW , we use a positive value lnQ , because it 
does directly contain the probability of the macros-
tate (expression (4)). Given that 0 1Q  , as well, 
because of the monotony of the logarithm, probabili-
ty Q  corresponds to the minimum of the function: 
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Moreover, given (3), we can see its relation to 
Boltzmann entropy S lnW :  

1 2 1 2
1

ln ( , ,... ; , ,... ) ln
M

M M i i
i

Q n n n p p p n p S


    . 

(10) 

Including the designation: 

1 2 1 2

1 2 1 2

( , ,... ; , ,... )

ln ( , ,... ; , ,... )                ,

d M M

M M

D n n n p p p

Q n n n p p p
N


  

and writing it in a short form, taking into account 
(10), we can obtain 

1

ln ln
M

i
id

i

Q n SD p
N N N


    .         (11) 

The designation dD  is of the word “divergence” 
(because the expression (11) may be deduced to the 
form, matching Kullback–Leibler divergence [14]). 
Subscript d  is of the word “different”, indicating 
different values of a priori probability. dD  value 
may be conveniently named an entropy divergence, 
having in mind its continuity with the entropy. 

The name of entropy divergence is quite valid, 
because (11) represents the difference between two 
entropies – the current value of entropy is subtracted 
from its maximum possible value, that depends on 
the distribution of a priori probabilities. The value 

dD  always stays positive. The proof of these asser-
tions is shown in the following section. 

Let us show that the expression (11) can really be 
presented in the form of Kullback divergence. To 
this end, for (9) we apply the formula of Stirling 
ln ! (ln )1m m m   . Then 

1 1

ln ln ln
M M
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i i
id i

n nD p N n
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     . 

Bracing the positive value, we can obtain 

1 1

ln ln ln
M M

i i
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id
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or                    
1

ln
M

i

i i
d

i

n n ND
N p

 .                      (13) 

This expression constitutes the entropy diver-
gence as the statistical distance between two distri-
butions - current and its maximum achievable - equi-
librium distribution. The visibility to the above spe-
cified is of an individual (classic) case, where the 
postulate of equal a priori probability remains valid.   
In this case: const 1/ ,ip M   then from (11) there 
should be: 

lnnd
SD M
N

  .                         (14) 

Alternatively, given (12), we can write: 

1

ln ln
M

i

i i
nd

n nD M
N N

    
 
 .            (15) 

Here the index of entropy divergence for equal a 
priori probabilities is changed: nd means “no differ-
ent”. 

Out of this case, it is clear, that the entropy di-
vergence (14) represents the difference between the 
maximum possible value of entropy ln M  and its 
current value S/N.  Hence, the pursuit of the entropy 
to a maximum corresponds to the pursuit of the en-
tropy divergence to a minimum. 

Thus, when the postulate of a priori probabilities 
equality becomes invalid, the statistical analysis of 
the systems cannot be focused only in the entropy 
criterion. More general criterion, which takes into 
account asymmetrical a priori conditions of elements 
distribution within the system, is the entropy diver-
gence. Its inclusion conforms to the principle of 
continuity – the entropy is an additive component of 
the criterion and in its usual role is used in the case 
where the main postulate of statistical mechanics 
remains valid. 
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V. PROOF OF BASIC THEOREMS 

Theorem 1. A necessary and sufficient condition 
of equal probability of microstates of the system is 
the equality of a priori probabilities of its elements 
distribution in the space of individual states. 

Substantiation. A necessity of the condition is 
substantiated by contradiction. Let an equal proba-
bility of all the microstates  1 2

1 2
M

M
n n np p ...p  to be 

satisfied under unequal values of a priori probabili-
ties 1 2 Mp , p ,..., p  of elements distribution among the 
cells of conditions' space. Then the probabilities of 
all M different microstates should be equal among 
themselves, whose elements are collected in a single 
cell, that is 1 2

N N N
Mp p ... p   . Nevertheless, it is 

possible only when all a priori probabilities 
1 2 Mp , p ,..., p  are equal among themselves that con-

tradicts the original conclusion. The necessity of the 
theorem condition is substantiated. 

The sufficiency of the theorem condition is ob-
vious: if the values of a priori probabilities of the 
elements distribution in the cells of the states' space 
are equal among themselves 1 2 Mp p ... p   , so 
the probabilities of all the microstates, i.e. the prob-
abilities of any combinations of 1 2

1 2
M

M
n n np p ...p  (under 

1

M

i
i

n N


 ), remain equal. The theorem is proved.  

Theorem 2. If the distribution of a priori proba-
bilities is defined by a variety of  1 2 MP : p , p ,...p , 
then the maximum of system macrostate is imple-
mented under such equilibrium distribution of the 
number of the elements of the system 

 1 2 M max
n ,n ,...n  under 

1

M

i
i

n N


  that satisfies the 

condition: 

max

i
i

n p
N

   
 

.                        (16) 

Substantiation. If the distribution of a priori 
probabilities is defined by a variety of 

 1 2 MP : p , p ,...p , then the probability of macrostate 
Q is expressed by the expression (4). Because of 
0 1Q  , and while the logarithm is a monotonical-
ly increasing function, so the maximum value Q 
corresponds to the minimum of the function – ln Q. 
Let us find a conditional extremum of this function 

under 
1

M

i
i

n N


 , using the method of Lagrange 

multipliers. 

To do this, we will request 

1
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i
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 , that, considering 

the expression (12), is equivalent to the request: 
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From this we obtain the extremum conditions 

ln ln 1i
i

n p
N
   ,  

or 
1i

i i
n p e p С
N
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Multiplier 1С   that comes out of normalization: 

1 1
1

M M
i

i
i i

n C p
N 

   . 

Obtained extremum condition, taking into ac-
count the positive second derivative, provides a con-
ditional minimum of the function ln Q , and, con-
sequently, a conditional maximum of the macrostate 
probability Q . Then, as can be seen from (17), the 
maximum of macrostate probability maxQ Q  is 
achieved under the extremal distribution 
 1 2 max

, ,... Mn n n  that satisfies the condition (16). The 
theorem is proved. 

In the particular case of equal a priori probabili-
ties const 1/ip M   from the equality (16), it 
comes out, that macrostate probability maximum (so 
the entropy maximum) is achieved with an uniform 
distribution 

max

1 constin
N M

    
 

,               (18) 

that is a well-known fact. 
Theorem 3 (consequence). If the distribution of a 

priori probabilities is set by a variety 
 1 2 MP : p , p ,...p , then the maximum value that can 

be taken by Boltzmann statistical entropy is  

1

max ln
M

i i
i

S p p
N 

  .                 (19) 

Indeed, if we substitute (3) into the entropy for-
mula (6) and then further convert it using Stirling 
formula (see (12)) it would lead to such a form 

1

ln
M

i

i iS n n
N N N

  , 
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then considering theorem 2 we should obtain (19). 
The theorem is proved. 

In the particular case of equal a priori probabili-
ties const 1/ip M   out of (19) we get, that 
Boltzmann entropy maximum is a known value: 

                           

max lnS M
N

 .                    (20) 

Theorem 4. Entropy divergence is always non-
negative 0dD  . 

The validity of this conclusion follows directly 
from the definition of entropy divergence (11). If the 
probability of the macrostate Q  satisfies the condi-
tion 0 1Q  , (and hence ln 0Q  ), for all the dis-

tributions of 1 2 Mn ,n ,...n  
1

M

i
i

n N


  
 
 , 

ln 0d
QD

N


   is valid. 

VI. RESULTS 

Results of research represent distributions, ob-
tained on the basis of the proposed criterion such as 
conditional minimum of entropy divergence. 

Popular formalism of Janes [1], used to build the 
equilibrium distributions, is actually the use of clas-
sical Lagrange multipliers method to find the condi-
tional entropy maximum. As conditions there may 
be various restrictions, specified using the relation 
equations.  

New formalism described here contains the cal-
culation procedure for another criterion – condition-
al minimum of the entropy divergence. Here are the 
examples of its use to output two distribution laws, 
adapted considering random values of a priori prob-
abilities. 

Exponential distribution law. By the use of the 
adopted terminology in Section 4, we can find such 
a distribution of the number of “agents” 1 2 Mn ,n ,...n  
that corresponds to the maximum probability of the 
system macrostate, or is equivalently to the mini-
mum entropy divergence. New formalism suggests 
the search procedure of conditional entropy diver-
gence minimum 1 2 1 2( , ,... ; , ,... )d M MD n n n p p p  
through finding an unconditional minimum of some 
function 1 2 1 2( , ,... ; , ,... )M Mn n n p p p , that additively 
includes the divergence dD  itself and a number of 
other restrictions, weighted with Lagrange multip-
liers , , ,...   . We will take into account only natu-
ral limitations (1) and (2), considering total number 
of “agents” and “resources”. 

Further, by reducing the designations, we shall 
write the minimum   conditions through the re-

quirement of equality to a zero of each partial deriv-
ative for all  1 2i , ,...M : 

1 11 1 0

M M

i i i
i i

d
i i

n n
D

n n N E
 

                  
     

   
   

 
, 

(21) 
here dD  is defined by the expression (12). This re-
quirement leads to the equality 

1 0i i
i

nln p ln
N E N


        . 

Designating a constant 1e C   , we can find its 
solution as known exponential distribution, but now it 
considers the distribution of a priori probabilities ip  

i
E Ni

i
n p C e
N




   .                 (22) 

We can show that this expression takes the form: 

1 i

**

**

i i

**

n p e
n p



  ,                     (23) 

here ** **( )p p   designation refers to the cell with 
coordinate i **   . Here **  is the coordinate of the 
extremum (mode), and ** **n   is the value of the 
extremum of the function ( )i i i iE n   , describing 
the distribution of “resources”. 

Limitary hyperbolic distribution law. The macro-
system can be regarded as limited variety of “re-
sources” distribution on the final variety of “agents”. 
Moreover, the names of these varieties are condi-
tional, and their status is changing frequently. In 
addition, we can also speak about their various “ac-
tivity” [13]. More active is such a variety, in which 
the relaxation process is implemented more quickly. 
It has been shown that for such a case the corres-
ponding equilibrium distribution 1 2 Mn ,n ,...n  has the 
exponential form (23). 

However, there also are the opposite cases, where 
a variety conditionally named “resources” has the 
higher activity. This seemingly paradoxical conclu-
sion is easier perceived after providing some exam-
ples. In particular, if the capital is considered just as 
a set of “resources”, it is significantly more active 
than its “agents” – the people. Even brighter exam-
ple of social geography, where the population as a 
variety of “resources” is more active than its 
“agents” – the cities. For these examples, as it was 
found empirically, there is not exponential distribu-
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tion observed already, but hyperbolic (exponential). 
In the first example, it is named as Pareto law, and in 
the second example – Auerbach law.  

In paper [12] there was performed the search 
process for the entropy maximum of the distribution, 
but of not the “agents” 1 2 Mn ,n ,...n  already, but of the 
“resources” 1 2 ME ,E ,...E , where i i iE n  .  The solu-
tion is so-called limitary hyperbolic distribution law 

1 *

ii *

* i

n e
n








,                          (24) 

that under the extremum coordinates *  striving to a 
zero, turns into a clear hyperbolic distribution law. 
Here * *( )n n  . 

As a next step, we define how the limitary hyper-
bolic distribution (24) changes its form under the 
condition, the a priori probabilities are not equal and 
are set by  1 2 MP : p , p ,...p  variety.    For this pur-
pose instead of the conditional maximum of the 
entropy, we shall search for the conditional mini-
mum of the entropy divergence 

1 2 1 2(E , ,... ; , ,... )d M MD E E p p p  under the same limit-
ing conditions (1) and (2). 

Conditional minimum requirement can be written 
in the same mathematical form as (21). However, 
taking into account the above, the entropy divergence 
instead of the formula (12) will have different form: 

1 1

ln ln
M M

i i

i i i
id

E E ED p
E E E 

     
 

  ,       (25) 

here i i iE n  . This requirement leads to the equality 

ln ln 1 0i i
i

i

np
E
 

      


. 

Its solution (including the designation    
1e CE

N
   ) is:  

ii
i

i

n Cp e
N





.                    (26) 

Furthermore, by defining the constants C and  
in the manner it was made in [12], we obtain the 
final form of the limitary hyperbolic distribution 
law, if a priori probabilities pi are set by a variety  

 1 2 MP : p , p ,...p
 

1 *

ii i *

* * i

n p e
n p








,                        (27) 

here *  is the coordinate of the extremum, *n  is the 
value of the extremum of distribution (27),  

* *p p( )   is an a priori probability of the cell with 
this coordinate settlement. It would be fair to refer 
the work [15], after reading which the author was 
prompted to start the researches that have lead to the 
distribution (27). 

VI.  CONCLUSIONS 

Formal borrowing of the entropy approaches 
from the thermodynamics and statistical physics to 
analyze non-physical macrosystems (economic, 
social) is not always valid and may cause errors. It is 
important to remember that in the physical sciences, 
such an assumption is valid, as a condition of a pri-
ori equal probability of the microstates, and it has 
the status of the basic postulate of statistical physics. 

However, this ideal characteristic, which is due to 
the phase cells settlement conditions symmetry, is 
not always the case in the above-mentioned non-
physical macrosystems due to their fundamental 
inability to be isolated. Typically, each of them with 
certain necessity is included into the scheme of a 
causal interaction with many other macrosystems, 
mutually distorting the conditions of their formation. 
For example, an economic system cannot exist out-
side social or political system, and demographic 
system cannot be isolated from economic or envi-
ronmental system.  

When the postulate of equal a priori probabilities 
becomes invalid, Boltzmann entropy S = lnW (and 
other derivatives of its form) cannot longer play the 
role of a function, characterizing the probability of the 
macrostate of the system. Such a task can be handled 
by only more general characteristic, which is called 
here the entropy divergence Dd. In accordance with 
the principle of continuity it contains the entropy as a 
component. In relation to the properties of the entropy 
divergence a number of theorems are proved.  

It is shown that the criterion of the equilibrium 
state of the system in the general case is a conditional 
minimum of the entropy divergence  mindD . In addi-
tion, such a widely used criteria as the conditional 
maximum of the entropy maxS , corresponds to it in 
the particular case of equal a priori probabilities. 

Formalism, based on the definition of a condition-
al minimum of the entropy divergence makes it poss-
ible to calculate the equilibrium distributions, depend-
ing on the a priori probabilities, which in turn are 
caused by the influence of other systems. The multip-
licative form of the combined distribution allows us 
to consider the process of the interaction of two or 
more macrosystems as the realization of a complex 
experience. Merging macrosystems related to this 
type by an adaptive statistical interaction may be ana-
lyzed from the perspective of a single meta-system. 
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