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Abstract—The problem of designing a perfect adaptive control law for controlling the nonminimum phase
discrete-time tracking system, which represents an aircraft autotracking radar, obtained by sampling a
continuous-time system is proposed. The main goal is to achieve high performance indices of this class of
systems. A new adaptive digital controller consisting of the adaptive feedback in conjunction with adaptive
indirect feedforward circuits is proposed. Obtained results can be useful for autotracking radar design.
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I. INTRODUCTION

Creation of digital tracking systems on the basis of
radar stations is one of perspective trend in the area of
radio location. The main function of such a system is
determination of aircraft’s current angular
coordinates. Dynamic accuracy of such systems is
defined by the current angular error between
direction to the aircraft to be tracked and to the radar
antenna axis. Systems of such a class have a specific
feature. In contrast to many systems, the input signal
represents a system error but not a current angular
aircraft location.

The initial stage of auto tracking radar operation is
accompanied by the problem of achieving good
performance for systems of this class. This problem
stays still important until nowadays.

The objective of tracking control is to follow a
prescribed trajectory so that the tracking error must
be minimized. The aircraft autotracking radar
belongs to this class of control system. However, its
input signal is the angular tracking error [1] whereas
the command reference signal plays the role of such
an input signal for the classical tracking system. This
feature of autotracking radar is essential.

Modern motion control systems require accurate
high speed tracking capabilities [2]. To achieve this
goal, feedforward techniques in conjunction with a
feedback design have been before proposed by many
researches. In order to realize a feedforward scheme,
explicit knowledge of the system dynamics is needed.
Namely, for compensating a dynamic lag in the
feedback circuit, the ideal feedforward controller is
the dynamic inverse of a plant to be controlled.
Thereby, this controller becomes unsuitable if the
plant is nonminimum phase.

II. REVIEW

Since the modern controllers are implemented
digitally in almost all practical applications, sampling
a continuous-time system is often necessary [1], [2].
To implement the digital control of the autotracking
radar, the continuous-time tracking error e(¢) that is

the current difference between the angular
displacement of the moving aircraft and the angular
displacement of the axis of the tracking antenna
needs to be sampled as shown in Fig. 1.

Unfortunately, the sampling effect may lead to the
appearance of the nonminimum phase properties of
the plant described in the terms of the discrete time,
when it is sampled with sufficiently fast sampling
rate while its continuous-time counterpart is indeed
minimum phase. Such a property that is not desirable
has been first observed by one of the authors [3] who
dealt with a third-order system. This fact is strictly
confirmed by Astrom and his colleagues [4] proving
that a continuous-time system whose pole excess is
larger than 2 will always produce a pulse transfer
function having nonminimum phase zero (zeros) if
the sampling interval is sufficiently short.

To cope with unstable zeros arising in
discrete-time systems, a number of feedforward
approaches has been advanced. Among these is the
feedforward methodology devised independently in
[5], [6] and also in [7]. Their methodology exploits
the fact that a noncausal expansion of partial unstable
inverse dynamics converges in a region of the
complex plane encompassing the wunit circle.
Although such a tool is approximate because of
truncated  Laurent  series  expansion, the
approximation error can be made arbitrarily small
when there is no noise and future reference trajectory
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information is available, one must know plant
parameters to implement this methodology as in the
ideal case. In practice however it is hard to derive
explicit knowledge of these parameters. In this case,
an adaptive control concept seems to be appropriate.
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Fig. 1. Aircraft autotracking radar together with
digital control circuits

Stabilization of plants using adaptive control
strategy is known to be an important preliminary step
toward achieving good performance for this class of
control systems. Contrary to the minimum phase
case, the development of stable adaptive control
scheme for nonminimum phase plants is hampered by
the singularity that may occur when the identification
algorithm leads to appearing uncontrollable
estimated plant description [8]. For overcoming this
intrinsic difficulty, two different approaches were
advanced by several researches. One of them
suggests the introduction an excitation probing
signal. A drawback of this approach is that one may
not be desirable in various practical applications. The
alternative approach is based on suitable modification
of the parameter estimates to put them away from the
singularity surface in the parameter space. To date,
there are only two ways to modifying the estimation
procedure. One is to hypothesize the existence of a
known convex compact region in which no pole-zero
cancellation of estimated model occurs [9], [10]. The
other exploits some observable properties of either
least squares [8], [10] or gradient-type algorithms
[11]. Although the first way requires a priori
knowledge of a region onto which parameter
estimates must be projected, however, it is essentially
simpler than the second way.

In contrast to the adaptive control of discrete-time
minimum phase system which causes its output to
asymptotically follow a desired reference sequence
without tracking error when there is no noise, the
tracking error is intrinsic for the adaptive control of
nonminimum phase system [7], [8]. Meanwhile, the
existing adaptive controllers contain no feedforward
circuits to compensate this error. Probably, this
reflects the fact that adaptive identification

algorithms do not guarantee the convergence of
parameter estimates to their true values when
persistence of excitation is absent, in general.
Nevertheless, some authors tried utilize here the
truncated Laurent series expansion technique for this
[7], [11]. However, their results have been remained
somewhat uncompleted.

The paper deals with improving a tracking
performance index of adaptive discrete-time
nonminimum phase system obtained by sampling a
continuous-time  system. Based on the
feedforward/feedback control methodology, a new
adaptive control scheme containing the adaptive
feedforward control loop in conjunction with the
feedback controller is developed. The key idea is that
the adaptive feedforward control scheme is now
neither inverse of the plant model being estimated nor
its approximation. An attractive feature of this
scheme is that its parameter converges to the
corresponding true value, while the similar
convergence of the plant parameter estimates is not
guaranteed. The main effort is focused on
establishing the stability of the designed system that
is not obvious and also on studying its ultimate
behavior.

III. PROBLEM STATEMENT

The continuous part of the aircraft autotracking
radar containing the amplifier together with the DC
motor in series (see Fig. 1) is assumed to be a
third-order plant whose transfer function is given by

k
s(ts+1)(t,s +1)]

Wo(s) = (1
where k£ denotes its gain and T, and t, are the time
constants. It is assumed that t, # t,. Without loss of
generality, let t,>1, , ie, m=r1,/1,>1. The
following basic assumptions on (1) are made.

Al) The parameters k , 1, and 1, are exactly
unknown, but one knows a priori intervals

0<ky, <k<k, <o, 2
0<T1,min ST STy <0, 3)
0< Ty min ST STy pax <O “)

to which &, 1, and 1, belong.

A2) The condition N=1,/1, >1 is valid for any
estimate vector T from known convex compact
region T, =7 min> Tmax ] [T2.min> To.max ] © R’

. . T
containing the unknown vector t=[t,, 7, " .
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Since the continuous-time part needs to be
sampled with a sampling period T, the discrete-time
model of a system composed of the zero-order hold,
this part and a sampler in series is further considered.

The corresponding pulse transfer function in z™' is
obtained as

re_—1
Wd{‘):% 5)
(1-z7)A4'(z")
with p=k7, and the polynomials A4'(z™")=

l+az"' +a,z? and B'(z")=bz"' +bz 7 + bz
whose coefficients are defined in [3]. Note that they
have the following observable property:

b'>0 (i=1,2,3)

KR ©)
orall n=,/B,, k€(0, ).

Let »° represent a command reference input
signal at the time instant t=n7T (n=0,1,2,...).
Then the discrete-time tracking error will be
determined as

en:y?[_ynﬁ (7)

where y, denotes the output measured signal formed

by the sensor (see Fig. 1).
The following assumption about

the first
difference Ay) :=y’ -y is required.

A3) The sequence {Ay'} is upper bounded. This
implies that its /_-norm satisfies
sup |Ay! < oo.

0<n<ow

10, =

The aim of the paper is as follows. It is required to
design a digital autotracking radar containing the
continuous-time  plant described by transfer
function (1) together with the zero-order hold and
with a simple adaptive controller such that the
discrete-time closed-loop control system will be
stable in the sense that, under assumption A3), the
tracking error {e,} and also the control {u,}
sequences remain bounded uniformly in # for any
sampling period 7, and y, follows »° as closely as

possible for all sufficiently large n. More certainty, it
is necessary to achieve the second-order astaticism of
tracking control system, i.e., the component of the

error e, proportional to Ay. should go to zero as n
tends to infinity.

IV. PRELIMINARIES
Fix a sampling period 7 and define
Miin = kminTﬂ Hmax = kmaxT’
B],min = T/T],max’ B],max ZT/T],minﬂ
BZ,min = T/TZ,maxﬂ BZ,max = T/TZ,min‘
In view of (2) — (4)
Q= [umin ’ umax ] X [B]’min 5B],max ] X [BZ,min ’BZ’max ]

will be the set of the vectors ¢ = [ﬁt,ﬁ],ﬁz]T mapping
the membership set [k . .k

min > "“max

]xT. of the original
parameters. This yields ¢ € Q, where ¢ =[p,B,.B,]"

Let ’
B(z™") =bz'+b,z?+bz” be the polynomials
given by Az HY=(1-zH4'(z
B(z')=pB'(z"). Now, define the
Q—>ZcR’ and Q—>Z"cR® in which = and
2"  represent the sets of the
0=[al,a,.b,b,,b,]" and 6° =[a,,4,,d,b,,b,,b,]F

respectively, induced by ¢e Q. Assumptions Al)

A(z_]) =1+a]z_] +a22_2 +ayz” and

and

maps

vectors

and A2) give that = and Z° are compact. This
means the existence of finite

’ Al ' _ AP .
ai,min - mln ai H ai,max - max ai (l - 19 2) ’
ceQ ceQ
a; in =Ming;, @, . =maxa, ([i=1,2, 3),
ceQ ceQ
b, min =minb,, b, . =maxb, (i=1,2,3).
ceQ ceQ

Define the convex compact regions

E+ = [a],,min > a;,max ] x [a;,min > a;,max ] x

[b],min s b],max ] X [bZ,min s b2,max ] X [bS,min s b3,max ]’
i
= = [al,min > a],max ] XX [aS,min > a3,max ] x

[b],min H b],max ] XX [bfs,min H b3,max ]
From (6) and these definitions we can derive

b >0 (i=1,2,3) (8)

i,min

and

—

*_ =0
5 DE. )
To illustrate inclusion (9) together with (8), the

 and Z° onto the planes {l;],l;z} and

projections =
~ A — '_‘* .
{b,,b,} denoted as Z{, and =, respectively, are

depicted in Figure 2a and b. They were calculated for
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the numerical example setting 0.14<(1<0.22 ,
0.3<P, <1.0, 1.1<B, <30.0.
Bz
Az
be an arbitrary pulse transfer function with
A(z™") and B(z™") induced by some fixed 6°.
Introduce the Sylvester resultant matrix

1 0 0 0 0 O]

Let W,(z") = (10)

M(©") = 2

0.4

hEmEX * 7
nash
naf
025
b o2t
015k
o1t

Porin, 0,08 |---4
onsb |

i) I . . . . .
0 002005 01 0.15 02 0.25 03 035 0.4
b mas

(a)

"min

associated with 6° . The absolute value of its
determinant plays the role of a measure of the

controllability of plant (10) [9]. In fact, é(z") and
A(z™") will be coprime iff

|det M (6°)|>0. (11)

It is known that (11) is satisfied for any 0" =",
Calculations performed for the numerical example

shows that (11) may take place even for all 6" from

=" covering Z°. Motivated by this observation, one
can make the following crucial assumption.

A4) zzl(z"') and é(z"') are coprime for all

0.1

by 008 ./

005t =,

N

ol . . . . . . L
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B by Pmax

(b)

Fig. 2. Geometric interpretation of (8) and (10) as applied to a numerical example

V. ADAPTIVE CONTROL ALGORITHM

Following to [11], the control input u, will be
chosen as the sum

(12)

where uff') denotes the output signal of a stabilizing

— ) (©)
u,=u,” +u,”,

feedback controller and u'“ represents the signal

n
generated by a compensating indirect feedforward
controller (see Fig. 3).

The parameter estimator is a basic one used to
establish earlier global convergence results [8]
subject to parameter projection. As in [9], we use (9)
to design the gradient constrained parameter
estimation algorithm with the dead zone of the form

_f(e,m)

0 - ®,-
e

=P {0 (13)

n

Adaptive Controller
I,
* Indirect .
C)—» Feedforward ﬁjdap_tf'_Ve |
" Controller entifier
c)
u(” Discrete-
Time Plant
e R y
” _| Feedback + Wo(z") -
Controller oS U, 0

Fig. 3. Structure of the adaptive tracking system

In this equation, f(¢,m) represents the dead zone
utilized in [8] and defined as

e-n if e>n,
fem) =10 if |e|<m,
e+n if e<-nm,
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where n>0 is a constant F_. is the projection
operator

T
Qs =AY, =AY, sty Uy U5 ]
state vector and e, defines the estimation error given
by

necessary  to  ensure 0, €ZE]

denotes the

én :Ayn_e;rt-](pn—] * (14)
Utilizing the pole assignment strategy of [10], the
(9)

n

control signal u,” can be determined as

F,, (Zi])ur(f) =G, (Zi])en (15)

In this control law,
F .z =1+ fi(m)z" + fL(n)z 7 + f(n)z ™,

G,(z)=gy(n)+g )z +g,(n)z7 + g5(n)z">
satisfy the Bezout polynomial identity
A-zH4 (zHF,(z")+B,(zHG,(zH)=1 (16)

B,(z”") whose
coefficients are the components of the estimate vector
0, updated via (13), (14).

The operation F_. {} in (13) together with

with the polynomials A/ (z™"),

assumption A4) ensure the solvability of (16) for all
n.

It is known that in the absence of any noise and
plant uncertainty, the control signal

u, =p Ay, (17)

generated by the feedforward controller allows to
achieve the second-order astaticism of the tracking
system. However, control law (17) cannot be realized

because p is unknown. Again, Ay’ remains here
unmeasured. Therefore, these variables must be
replaced by the suitable estimates ., . It turns out that
the estimate can be found by utilizing the relation

b +b,+by=p(l+a+ay) (18)
derived from (4). This leads to choosing
u, =p,'(Ae, +Ay,) (19)

where
w, =[by(n) +b,(n) + by (m)]/[(1+ ay(n) + a;(n)]

is obtained after replacing in (18) the unknown
coefficients by their estimates and Ay’ by
Ae,+Ay, thatis valid due to (7).

Since b,(n)>0 (i=1,2,3), it follows from the
expression of , that one is bounded away from
zero. It is essential to avoid the singularity in (19).

VI. MAIN RESULT

The basic convergence result is summarized in the
following lemma.

Lemma 1. Under assumptions Al), A2) and A4),
the adaptation algorithm defined in equations (13)
and (14) is convergent in the sense that the estimate
vector 0, converges to a constant vector 0, for any
initial 6, € Z".

Proof. The proof is based on proving the fact that
V,= ||9 - Gn||2 is the Lyapunov function.

The stability properties of the proposed adaptive
control algorithm are explored in the next theorem.

Theorem 1. Subject to assumptions Al) — A4); the
adaptive control system which comprises plant (5),
estimator (13) together with (14) and controllers
described by equations (12), (15), (16), (19) is stable
in the sense that the tracking error e, and the control
signal u, remain bounded for all time.

Proof. The proof follows the ideas given in [10]
and in [8].

With the convergence properties established in
lemma 1, the following theorem can be stated.

Theorem 2. Let assumptions Al) A4) be valid. If

y? is a signal linear in 7 and there is no noise, w,

converges to its true value p .
Proof. The proof is omitted because of space
limitation.

Comment. Note that p=Iim is achieved

n—0 l'l'rl
without requiring the convergence 0, to 0 if y° is
linear and v,=0. Nevertheless, numerical
simulations show that this property is observed for
not necessarily linear y_. However, the question of
why this important property takes place remains
unresolved, as yet. For any case the convergence L,
to u implies that the second-order astaticism is

achieved.

VII. CONCLUSION

The main contribution of the paper is a new
adaptive controller applicable to controlling a
nonminimum phase discrete-time tracking system. It
contains a novel adaptive feedforward loop in
addition to the usual adaptive feedback loop. This
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