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Abstract— The possibility of introducing non-emitting nanoscales on the basis of quantum cellular
automata has been investigated. It practically neutralizes electromagnetic attacks. The method of
protection from external interferences and observations of electromagnetic radiation (attacks) is
proposed in the work. The power consumption of cryptographic modules has been reduced by five orders.
Secure encryption of cryptographic information is provided..

Index Terms—Quantum cellular automata; majority gate; Gaois configuration; linear shift nanoregister.

I. INTRODUCTION

Power analysis attacks were introduced in [1]. In
fact, power and electromagnetic (EM) side-channels
are the most important ones for implementation of
block ciphers. The power consumption as well as the
EM field surrounding a cryptographic module may
leak a significant amount of information about the
private key. The power consumption as well as the
EM field that is caused by the current flowing in a
cryptographic circuit implemented in CMOS leak
information about the private key [1]. This current is
mainly caused by the charging or discharging of the
capacitances of interconnected wires.

II. PROBLEM STATEMENT

A Basics of QCA theory

Quantum-dot Cellular Automata (QCA) devices
consist of a dielectric cell (20x20) nm with four
quantum semiconductor dots 5 nm, located in the
corners, and two mobile electrons. Their position is
only dependent on a finite set of cell-values in the
vicinity of defined cell [2]. An isolated cell provides
tunneling junctions with the potential barriers. They
are controlled by local electric fields that are raised
to prohibit electron movement and lowered to allow
electron movement. Consequently, an isolated cell
can have one of three states. A null state occurs
when the barrier is lowered and the mobile electrons
are free to localize on any dot. The other two states
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are polarizations that occur when the barrier is
raised, and serve to minimize the energy state of the
cell. Probability of cell is in one of polarization state
can be correlated with charge density of each
quantum dot, and can be found with the help of
equation:

p.itp)-(ptp)
(pi+p3)+(py+py)

’

where pi is charge density every quantum dot of cell.
Figure 1 shows basic QCA cell, its two possible
orientations and polarization of electrons.

B Majority Gate and Inverter

Placing cells next to each other in a line and
allowing them to interact we can provide flowing of
a data down such wire. There are two methods of
wire construction in dependence on 45 deg or 90 deg
cell orientation theoretically, bun on practice it is
difficult to manufactured nano-cells with different
orientation [3].

Different gates can be constructed with QCA to
compute various logic and arithmetic functions. The
basic logic gates in QCA are the majority gate (a)
and inverter (b) on Fig. 2.

The output cell will polarized to the majority of
polarization of input cells. The Boolean expression
for majority function with inputs x,, x,and x, is

S =maj(x,,x,,X,) = XX, UXyX, UXyX,.
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Fig. 1. A single QCA cell and its two possible orientations and polarization (P == 1)
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Fig. 2. Majority gate (a) and inverter (b) in QCA

By fixing the polarization of any one input of the
majority gate as logic 0 or logic 1, we obtain AND
gate or an OR gate respectively

Sano =maj(x;,x,,0) =x,x,,
Jor =maj(x,,x,,1)=x, UXx,,

Creation of a fixed cell can be done within
manufactured process and constant signals do not
need to be routed within the circuit.

III. PROBLEM SOLUTION

A power consumption (e.g. the side channel) of a
cryptographic module depends on many parameters.
Only one of them is the private key. However, the
fact that the side-channel output depends on the
private key is often sufficient to reveal it. In order to
exploit this dependency between the side-channel
output and the private key, an attacker usually builds
a model of the side channel. This model is typically
not very complex. In fact, attacks conducted in
practice have shown that very simple models are
often sufficient to reveal the private key. Fig. 4
depicts the principles of a side-channel attack [2].
On the left side, the figure shows the physical device
that is attacked. Its side channel output is determined
by the private key, the input and the output of the
device and by many other parameters. Some of them
are known by the attacker, while others are not. The
model of the side channel used by the attacker is
shown on the right side in Fig. 3. The model may
consider additional parameters besides the key, the
input and the output of the module. However there is
always a certain imperfectness of the model.

Several countermeasures to power and EM
attacks have been proposed so far; however, each
technique may lead to design complexity, more
power consumption, size and speed issues of the
entire cryptographic modules. All these strategies
can be categorized in two groups: namely, they
either try to randomize the intermediate result or
take advantage of circuits with data and power
consumption independency. These techniques can be
implemented in architecture, logic, and algorithm or
protocol level. The QCA circuits we introduce in

this work takes advantage of QCA technology with
low power consumption and data independency
together with complicated clocking scheme that
makes it very difficult to make power consumption
models for cryptographic engineering implemented
in QCA logic.
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Fig. 3 Principles of side channel attacks
III.BASIC CONCEPTS OF GALOIS CONFIGURATION

In theory and practice of cryptographic
protection one of the key problems is the formation
of binary pseudorandom sequences of maximum
length of acceptable statistical characteristics.
Generators of pseudorandom sequences implement,
usually based on linear shift registers maximum
period linear feedback. Here expanded the concept
of linear shift register, believing that his every
category (memory cell) can be in one of the states.
Call registers are "generalized linear shift registers."

The main objective is to develop algorithms
generalized matrix Galois and Fibonacci nth order
over the field, which uniquely determine a structure
corresponding generalized n-bit linear nano-register
shift of the maximum period and forming on the
basis of generators of pseudorandom sequences
Galois maximum length.

In theory of Galois fields, which are the
foundation of algebra noise immunity coding,
cryptography and building modern nano-electronic
data transmission systems, the key is the concept of
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irreducible polynomial of one degree variable
L=, x"", o cGF(p), a,=1
i=0

irreducible over the field, if it does not devide on
polynom of smaller degree over the field.

The most important property of finite extended
Galois fields, which is generated by irreducible
polynomial, it is that for any nonzero element it
should be the opposite element such that

g-g'(mod f,)=1 formulated condition holds if is

called

the number simple. It follows that the Galois field
characteristic, both simple and advanced, should be
a simple number.

IV. SINTHESIS OF LINEAR SHIFT NANO-REGISTER
WITH GALOIS CONFIGURATION FOR CRYPTOGRAPHY

Let consider an example of four-digit linear
nano-register of shift with feedback which
assignation form first and fourth grade (Fig. 4).

D-trigger (Fig. 5) and the gate of XOR (Fig. 6) is
the basic elements of sequence nano-registers with
linear feedback.

DT =1 |F|p|T. |0 |p|l T

c ( c ( c c
Fig. 4. Block diagram of shift nano-register with feedback
(Galois configuration)

D-trigger (Fig. 5) and the gate of XOR (Fig. 6)
is the basic eclements of sequence nano-registers
with linear feedback.
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Fig. 5. Block diagram of D-trigger (a) on majority
elements (b)
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Fig. 6. Block diagram of XOR (a) on majority elements (b)

V. SIMULATION RESULTS

Period of four-digit shift nano-register with linear
feedback is equal:

L=p"-1=2"-1=15.
Algebraic form of binary polynomial:
fi(x)=x"+x+1..
Feedback function:
Fx)=x,®x,=0,90,.

The Table I shows the state of inputs-outputs and
value of feedback function F for shift nano-register
with linear feedback.

TABLE I

STATE OF OUTPUTS AND INPUTS OF SHIFT NANO-REGISTERS
WITH GALOIS CONFIGURATION

Input | Clock | @y | F | Q1| @2 | O;
1 1 1 0|0 0 0
0 1 0 1 0 0 0
0 1 0 0 1 0 0
0 1 0 0|0 1 0
0 1 0 0|0 0 1
0 1 1 1 0 0 0
0 1 0 1 1 0 0
0 1 0 0 1 1 0
0 1 0 0|0 1 1
0 1 1 1 0 0 1
0 1 1 0 1 0 0
0 1 0 1 0 1 0
0 1 0 0 1 0 1
0 1 1 1 0 1 0
0 1 0 1 1 0 1
0 1 1 1 1 1 0

Results of the automated designing linear shift
nano-register with Galois configuration shown in
Figs 7 and 8.

Total number of quantum cellular automata shift
nano-circuits register is: 410. The dimensions of
quantum cellular automata 18x18 nm. The distance
between the centers of quantum cellular automata is
20 nm. The diameters of quantum islands is 5 nm.

Total size of the register are: (960x610) nm.
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Fig. 7. Circuit of linear shift nano-register with feedback, which constructed in the environment QCADesinger
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Fig. 8. Time diagram of nano-register operation

IV. CONCLUSION work, a new approach to implementation of
quantum  cryptographic modules via QCA
technology has been presented. Matrix of Galois
configuration have important properties such as

Side channel attacks seriously threaten
cryptographic modules as they can be implemented
with relatively inexpensive equipment’s. In this
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O. C. MeasbHuK, [I. I'. Minbke. HanocxeMu 171 kKpunrorpagiyHux Moay.iiB

JlociimpKeHo MOXKITUBICTD 3alpOBa/XKEHHS HEBUIIPOMIHIOIOUMX HAHOCXEM Ha 0a3i KBAHTOBUX KOMIPKOBUX aBTOMATIB.
Ile mpakTHYHO HEWTpai3ye €JIEKTPOMArHiTHI aTakuio. 3alpOITOHOBAHO METOJ 3aXHCTY BiJl CTOPOHHIX BTpy4YaHb Ta
CIOCTEpE)KEHb EJIEKTPOMArHiTHOIO BHUIPOMiHIOBaHHS (atak). Ha m’saTh moOpsIKiB 3HM)KEHO E€HEPrOCIIOKUBAHHS
KpurrorpadiyHux MoyiiB. 3abe3nedeHo 3aBaI0cTiiike MU pyBaHHs KpunrorpadidHoi iHpopmariii.

Knarwu4oBi ciioBa: KBaHTOBHH KOMIpKOBHI aBTOMAaT; Ma)KOPUTAPHUH eJIeMEHT, KoH]irypauis [amya; miHifiHOrO
HAHOPETICTPY 3CYBY.
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HccnenoBana BO3MOXKHOCTh BBEJCHUSI HEHM3Iy4alOllMe HAHOCXeM Ha 0a3e KBAHTOBBIX SUYEUCTHIX aBTOMATOB. OJTO
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