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Abstract—The paper deals with rotation of gyroscope in Hess’ conditions. Motion equations of a solid
body are established on the base of Hamiltonian formalism. There are some analytical researches and
computer experiments were made on the base of numeral study of phase portrait of equations, which de-
scribe gyroscope’s motion. The movements of gyroscope, which is submitted to Hess’ conditions in the
null constant of integral of an area and a light weight of the body, are investigated more detailed. The
motion equations and integrals are expressed in variables Andoyer—Deprit. The heteroclinic trajectories
of the dynamical system are examined by means of the new canonical variables.

Index Terms—Gyroscope; rigid body with a fixed point; Hamiltonian; phase portrait; numerical model-

ing; separatrix; variables Andoyer—Deprit.

I. INTRODUCTION AND PROBLEM STATEMENT

Hess’ gyroscope has unique analytical and qualit-
ative characteristics, so it is a major figure in the
innovative dynamics of a rigid body. Two-
dimensional invariant varieties, that contain the
Hess’ solution, determine the border of chaos in a
dynamic system. This helps to examine all possible
variants of transitions from regular to chaotic mo-
tions. In this solution, there are the following things
that are remarkably combined: invariant torus,
which carries a quasiperiodic motions, limit cycles
and isolated periodic trajectories, the simplest mo-
tions of a physical pendulum, stable and unstable
relative equilibria, homo- and heteroclinic motions,
frequency resonances, splitting separatrix surfaces.
All these facts help us to confirm, that the most sig-
nificant ideas and results of the rigid body dynamic
may be clearly explained with the help of such an
example as the Hess’ problem about the movement
of the body around a fixed point.

The motion differential equations, which are re-
lated to the principal axes of inertia of a rigid body
in the fixed point, look like:

C=Gxa—H+yxa—H, y:YXG—H
oG oy oG 1)

H =§(G,IG>+ u(r,7)

here G =(A4p, Bgq, Cr)is the vector of kinetic mo-
ment on the coordinate system, which is connected
with the body; ®=(p, ¢, r)is the angular velocity of
the body; 7y is the ort of the vertical line in the same
a 0 0 174 0 0
I=/0 b 0|=| O 1/B O
0 0 ¢ 0 0 1/C

system; is the

inverse inertia tensor, which is assumed to be di-
agonal; r =(e,e,,e,) is the radius vector of the mass
center in the moving system; L is the product of the
body weight and the distance from the gravity center
to the fixed point.

Equations (1) with any Hamilton function admits
geometrical and area integrals:

C,=(M,y), C,=v"=I.

In the work there is an investigation of the body
movement, a weight distribution of which satisfies
the Hess’ conditions [1]

e,\JA(C—B) te,\/B(4-C) =0,

)
e,=0,4>C>B

If the conditions (2) are completed then equations
(1) have linear invariant relation:

eG, +e,G,=0. 3)

The physical meaning of limits on the parameters
in Hess’ case is in the following. Gyratory ellipsoid,
— the surface of the kinetic energy level in the mo-
ment space G — has two circular cross-sections,
which are passed through the third axis. Conditions
(2) means that the mass center lies on the axis that is
perpendicular to one of the circular cross-sections of
the ellipsoid. Invariant Hess’ relation means that the
projection of moment on this axis is equal to zero.

II. CANONICAL VARIABLES ANDOYER—DEPRIT

For analysis of the rigid body motions in the
neighborhood of the integrated case of Euler the
canonical variables Andoyer-Deprit are success-
fully applied. These variables are also used for dif-
ferent computer realization of the Poincare section
method [2] — [4]. We use the following notations
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[5]: through OXYZ we denote a fixed triangle with
the origin in the fixed point; Oxyz is a coordinate
system which is rigidly connected with the body and
axes of which are directed to the main axes of the
body inertia; . is a plane, which passes through the
point of fixing and is perpendicular to the vector of
the kinetic moment G. In the agreed notations L is a
projection of kinetic moment on the fixed axis Oz, G
is value of the kinetic moment, M its projection on
fixed axis Oz, [ is the angle between axis Ox and the
line of intersection Y. with Oxy, g is the angle be-
tween line of intersection Y with planes Oxy and
OXY, m is the angle between axis Ox and line of
intersection Y. with plane OXY.

In these variables the motion equations have a ca-
nonical form:

_OH __OH
oL’ - a’
. OH . OH
g=—, G=——, 4)
oG og
= 6_H’ M = _6_H‘
oM om

where the Hamiltonian
H=(G, 16)+u(r. ) = H(L G M.1. )

is a full energy of the rigid body and doesn’t depend
on the variable m, so that M =(G, y)=const — the

area integral — can be considered as the parameter.
The transition from variables G, y the variables

Andoyer—Deprit are given by formulas:

[(G2 L*)(asin® [ + bcos’ l)+Lc

\/G — I’ sinl,
\/ —I* cosl, )

=— / - sml+— fl M smlcosg
+ fl [ ) cosl/sing,
=— |1- cosl —, 1= coslcosg
G
—. 1= sin/sin g,
[GJ ¢
_IM 1—[5)2 I—KMJZCOS
Y= G2 G G 8-

For the inverse conversion we get:

(6)

=G,,G’ =G} +G, +G;, M =Gy,

_ G G
Ja+G2 ./GE+G§ ’
G, M2 Gy
[ = arctg —'j, 1- sing =—2=L_—L2
[Gz \/ +G2

Due to the formulas (5), (6) the Hamiltonian (1)
looks like

sin/ = cos/ =

H=H, +uH,. (7)

f sml+— fl smlcosg+ /1 coslsmg
,/ cosl+—,,1 coslcosg— f - s1nls1ng

=G (e sin/ +e, cosl)- [M\/G2 L +ING - M- cosg}

The system (4) will looks like:

[ =L(c-asin®l—bcos’ Z)—G—[\/G2 -cosg —

ng(asin21+bc0s21)— B

smg(el cos/—e,sinl).

e sinl +e, cos/),

)

GG - MG -1

-[Gsz/G2 — L’ sing(e cos/ —e, sin/)

—(M\/G2 ~M*(G* =21+ ING* -’ (G* —2M2)cosg)-(e] sin/ +e, cosl)},
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- u
= |

\/G2 —M2\/G2 -r —MLcosg)-(e] sin/ +e, cos!/)-MG -sing - (e, cosl —e, sinl)],

L= —%(G2 —*)a—b)sin2 + %[—G\/@ — M sing(e,sin/ +e, cos/)

+(M\/G2 2+ NG - M? cosg)-(e] cos/—e,sinl)],

G =%\/G2 —M?[Lsing- (e sinl +e,cos])+Gcos g - (¢ cosl —e,sinl)],

M =0.

Analogical canonical variables L, G, M, [, g, m

were used for studying of the Hess’ solution many
times, for instance, in works [3], [5], [6]. In this work
a sequence order of major axes of inertia is changed a
little in the fixed basis Oxyz. Redefinition of axes of
inertia hadn’t great influence on the Hamiltonian
structure (7), but also the equation was simplified (3).
A success of future researches results from the sim-
ple analytical structure of the invariant Hess’ rela-
tion.

III. HESS CASE

The Hess’ condition and invariant relation (3) in
variables Andoyer—Deprit will look like:

(c=b)ef =(a—c)e;,

NG —L' -(¢sinl+e,cosl) =0, (®)
When e sin/+e,cos/ =0 we have the Hess’

condition, and when G° =L’ and M =0-— physical
pendulum.
When p=0 we have the integrated case of

Euler—Poinsot. Unperturbed system
dl _0H(L,1, G,)
dt oL ’
dL _ 0H(L,l, G,)
dt ol

looks like

dl
dt
dL_1

" 2(G02 —I*)(a-b)sin2l.

= L(c—asin*/ —bcos® 1),

©)

In Figure 1 the phase portrait of system is shown

(12).

With any G, >0 the system (4) has fixed points

x:(L=0,1=0),
L

G,

x,: (L=0,[=m).

0 7 on 1
Fig. 1. Phase portrait of system (9)

Let’s consider the unperturbed system with

M =0. In this case equations (4) will look like
[ =L(c—asin*I—bcos’|)
—%cosg -(¢;sinl +e, cosl),

¢ =G(asin’ [ +bcos’ )

+%Lcosg-(el sin/ +e, cos/),

1t :—% G’ - L’ (¢ sinl +e, cosl),
. 1
L= —E(G2 —I*)(a—b)sin2]

+%[Lcosg(e] cos/—e,sinl/)
~Gsing(e sin/ +e, cos!) |,
G =%[Lsing(e] sin/ +e, cos/) +

+Gcos g(e cosl —e, sinl)],
M =0.

Hamiltonian (7) in this case looks like

H =—((G2 —1*)(asin® I + beos l)+L2c)+p(écosg(e] sin/ +e, cos/)+sing (e cos/ —e, sinl)). (10)
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Let’s express the potential energy of Hess’ gyros-
cope through variables Andoyer—Deprit:

M=p(ey, +e,7,)= %cos g(e sinl +e, cosl)

+ usin g(e cosl/ —e, sin/).
We change

e =cosQ,, e,=sing,.

(11)
So the Hess’ relation (8) will look like
sin(/+¢,)=0.

The angle ¢ is expressed through the components
of gyratory tensor as the following

(pozarctg(\/\/%] e (0,7/2)

and defines the fixed plane (invariant subspace) in
the space R’(G,, G,, G,), depends on the parame-
ters of rigid body.

Due to the replacement (11), we write the expres-
sion for the potential energy

L
1= M[Ecosgsin(l +¢,) +singcos(/ + (po)} .

We note, that on the Hess’ solution [I=psing,
on solution, which describes the physical pendulum
motion IT=p"'sin(g +/-0,).

The Hamiltonian (10) with the replacement (11)
looks like:

H= %((G2 — I’)(asin’ 1 +bcos’ 1) + Lc)

L
+ p[gcosg-sin(l +@,) +sin g cos(/ +(p0)).

IV. THE NEW CANONICAL VARIABLES
The Hamiltonian of unperturbed system looks
like
_ 1 2 2 ) 2 2
H, _—[(G —L)asin“l+bcos )+ L c]
2
. (12)
- E[aGf +bG; +¢G; |
Let’s consider the value
2T —cG* =aG} +bG; +cG; — G}
—¢G; —¢G; =(a-c)G} —(c-b)G;.
Considering relations (10), (6), (15) we find

(a=)G} ~(c=b)G} =“=5(d G} - &)
e]

= %(e]G] -¢,G, )(e]G] + esz)
1

=256 - 12 )sin(l + ¢y)sin(l — ¢,)

€

=x+(G* = I’ )sin(l + ¢, )sin(l - @),

Due to these transformations we write the Hamil-
tonian (12)

H, =1(2T ~cG* +cG’)
g (13)
:%[cGz +x(G* - I )sin(l + g, )sin( - g,) |

We use the canonical variables [7], that are en-
tered with the help of generating function
F, = 20,1+ 0) + J,(g ~1~@,) +mJ,

OF. OF.
9= 252 +l’e:—25 _l_ 5
Y (¢, +1), 8, o, g 9,
aJ, og
F. F.
L:LE2J1—J2, M:LEJ3
ol om

or

0, =2(p, +0), 0,=g-1-0¢,, 6;=m,

1 (14)
Ji=2G+L), =G, J=M,

that assign the canonical transformation to variables
(8,, J,). So from (14)

1 1
[==0,-0¢,, g=0,+—-0,
2o e EZHTOY (15)

m=0,, L=2J,-J,, G=J, M=J,

We substitute (15) in the Hamiltonian (10). Con-
sidering (13) we get

H=J,(J, - J,)(a—-b)[cos(B, —2¢,) — cos 20, |

1
ﬁLEcJZ2 +u[J;sin(6, +6,)+(J, —J,)sin6, |

B=Ji e ST

3
+2usin
2 WS r
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Invariant Hess’ relation is from (8):

NONOA —Jl)sin% =0.

On the Figure 2 the phase portrait of unperturbed
system of Euler—Poinsot, which is submitted to the
conditions (2), is depicted, in variables Andoyer—
Deprit (in interpretation [5], [6]) and in new va-
riables. A marked curve corresponds to separatrices.
Separatrices, to which Hess’ solutions are ap-
proached with p— 0, are marked with a bold line
and a dotted line. Uniform rotations are noted with
digits 14, the motions of pendulum of unperturbed
system are approached to rotations 1, 2.

On the null level of area integral M = 0 the Hamil-
tonian is equal to

H =§J22 +1J,(J; = J,)[cos(0, —2¢,) —cos 29, |

+Ji[J] sin(0, +0,)+(J, —J,)sin, |.

2

Then we will consider that angles ©,, are

changed in modulus 27m, and changing of variables

0, =x(2J, — J,)[cos(6, — 29,) — cos 2, | +

J,, is bounded by inequalities J, >0, J, >J, >0.

Fig. 2. Phase portrait of unperturbed Euler—Poinsot sys-
tem: (a) in the variables Andoyer—Deprit; (b) in new va-
riables

The differential equations of rigid body motion in
new coordinates are the Hamilton’ equations

40, _oH  do, oM
dt aJ dt oJ,’
d/, oH dJ, ©¢H

dr o8, dir 8,

or in an explicit form

£ (sin(6, +6,)—sin6,),
J2

0, =cJ, —xJ,[cos(6, - 29,) —c0s2(po]+;,t%(sin62 —sin(6, +6,)),

’ (16)

J, =xJ,(J, = J,)sin(0, —2¢,) — u%cos(G, +0,),

/5

If the system solution is known (16), the cyclic
coordinate 0, will be found by quadrature from

equation
. I, (T, =,
0, = ZHMSini .
J, 2
The projections of phase trajectories of unper-
turbed system (16) on the plane R?(9,,J,)are

Jy o = 0.2
> -

0,

o 1 2 3 a 5 6

2

—uJL((J2 —J,)cos0, +J, cos(6, +6,)).
2

shown on the Fig. 3. Area, separated by dot-dash
line, is shown at the right side in the extended to
three different values ¢, form.

Calculations were made for the next values of pa-
rameters of rigid body:

=001, 4 =25,

1

A, =20, A,=22.

3

Fig. 3. Projection of phase trajectories of the dynamic system (16) on the plane R*(0,, J,)
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