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Abstract—The solution of the problem of oscillations of a fluid in the cavities with a rectilinear generator
at different levels of completion. Parameter calculation results obtained pendulum model for longitudinal

fluid oscillations.
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pendulum; tank.
I. INTRODUCTION

Problems of the dynamics of bodies with cavities
containing liquid, to date, are still relevant. These
tasks many papers.

Interest in the problems of the dynamics of bodies
with cavities containing fluid significantly increased
due to the rapid development of rocket and space
technology. The stock of liquid fuel available on
board the rockets, satellites and space vehicles, in
some cases, can have a significant impact on the
movement of the aircraft. Similar problems arise in
the theory of motion of aircraft and spacecraft, as well
as in other technical matters. Thus, the problem of the
dynamics of bodies that have a cavity containing a
liquid, is of undoubted practical value. These prob-
lems are also of fundamental theoretical interest.

Problems of the dynamics of bodies with cavities
containing liquid, are among the hardest classical
problems of mechanics. Their study was initiated in
the last century by Stokes and other scientists. Ques-
tions of stability of a rigid body with a cavity con-
taining a liquid, also has long attracted the attention
of researchers.

Effect of fluctuations in fuel dynamics of the air-
craft is determined, first, the mass ratio of liquid in
the partially filled tanks and weight of the apparatus
itself and, secondly, the level of traffic control au-
tomation machine center of mass. For vehicles mis-
sile scheme in which an overload in the unperturbed
motion is directed along the longitudinal axis of the
apparatus, conducted extensive studies [1], [2] which
solved the problem of determining the mathematical
models of fluid flow in partially filled tanks.

For vehicles of rocket scheme, these questions are
virtually unexplored, and their relevance increases
with increasing load ratio of aircraft and automation
in the management role. And for firefighters aircraft,
where in addition to fluctuations in fuel and there is
still hesitation in fully extinguishing liquid-filled
tanks, this problem is very important.

II. PROBLEM STATEMENT

When solving practical problems with the dy-
namics of the object of interest liquid filling both the
detection fluid in the cavities, and wherein the re-
sulting forces acting on the aircraft by the vibrating
the housing fluid. No less important is the study of the
impact of the additional degrees of freedom pos-
sessed by the fluid on the stability of the unperturbed
motion of the aircraft. Excluding the additional de-
grees of freedom of the liquid, it does not always goes
to the margin of stability, so, for example, stable
object according to the calculations without taking
into account the fluid mobility, may in fact be unsta-
ble. The task is complicated by the fact that the proper
damping of oscillations of liquid fuels in large rock-
ets too little, as inversely proportional to the diameter
of the tank. Accounting for additional degrees of
freedom of liquids is reduced to solving a rather
complicated boundary value problems of mathemat-
ical physics (Neumann problem).

In order to solve the problem on its own linear
oscillations of a fluid in the cavities should be fixed to
make such assumptions:

— fluid is ideal and incompressible, and its
movement without turbulence;

— vibrations displacement and particle velocity in
the fluid are considered small;

— to consider linear motion axis plane OX;

— aircraft does not make rotating movements.

Considering that the irrotational movement which
depends on the: ¢ (x, y, z, f) is the potential unsteady
motion velocity of the fluid.

With these assumptions is valid for transient
liquid irrotational movement Lagrange integral that
determines the pressure at any point of the liquid:

© National Aviation University, 2016
http://ecs.in.ua



Yu.M. Kemenyash Fluid Motion Mathematical Model Development in a Partially Filled Cavity 95

_do. | _do  _do

- - - 2

odx] Y dyT 7 dz
2 .2 2 2
Vi=v oty 4V,

where p is the mass density of the liquid; v is the
particles speed; po is the fluid pressure oo, where
v = 0; p is the fluid pressure at any point.

It is known that the problem of proper linear os-
cillations of an incompressible fluid in the cavities

formed fixed as follows:

Ap=0;

2,
on

where ¢ is the potential velocity of the liquid,

iot,

Q= (D(xyz)e ; o is the oscillation frequency.

The velocity potential ¢ satisfies the Laplace
equation

Ap=0,
2 82 82
where A :8_2 +—+—5, A is the Laplace
X~ oy Oz

operator.
III. PROBLEM SOLUTION

The solution of this boundary value problem is
reduced to the calculation of the frequency of the i-th
tone and fluid vibrations corresponding to the tone of

the velocity potential @, (xyz) speeds.

The assumption of smallness free surface devia-
tions from the undisturbed state. For this potential ¢
compiled a partial differential equation (Laplace
equation). The study of this equation, together with a
system of ordinary differential equations describing
the motion of the aircraft shell, is very difficult and
can be brought to an end only for some of the sim-
plest forms of tank: sphere, cylinder, parallelepiped
(Fig. 1).

Obtained in this way are rather complicated algo-
rithms and to implement them, as a rule, it requires a
powerful computer software. A simpler solution to
the problem, which has an accuracy sufficient for
engineering calculations, can be obtained by using
mechanical models of fluid fluctuations in the tanks.
The principle of construction of these models is based
on a certain analogy between the fluid vibrations
more mass forces and vibrations of mechanical

models. The model parameters selected such that the
forces and moments acting on the part of models on
the tank when it is small fluctuations, coincided with
a similar impact on the liquid side. The most wide
circulation was received pendulum and spring-mass
models of fluid oscillations in tanks. The structure
and parameters of the mechanical model depends on
the form of the tank of fluid properties. In the ma-
thematical description of fluid fluctuations by solu-
tions of the Neumann problem for the Laplace equa-
tion, the wave process, appearing on its free surface,
represented as a superposition infinite set of vibra-
tions tones. To every tone has to conform to its me-
chanical model, however, due to slight influence
compared to the first tone, the higher vibrations tones
is usually neglected. This is because the fluid mass
participating in the oscillations decreases with in-
creasing tone.

Fig. 1. The tank in the form of parallelepiped

For tank, balanced state is characterized by the
free liquid surface perpendicularity to the longitu-
dinal axis of the tank, the mechanical model of the
first tone vibrations resulting from the plane motion
of the tank are shown in the following figure (Fig. 2).

h 1

O] -r h
y

¥

Fig. 2. Pendulum model

The model is presented in the figure is a mathe-
matical pendulum m,;, which owned by the suspen-
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sion point of the tank axis and located at a distance /;
from the free surface of a liquid (m; simulates fluid
mass that participates in the oscillations 1 tone). The
angle A; of deviation of the pendulum simulates the
slope of the slope of the wave vibrations in one tone.
Mechanical model takes into account the fact that
some of the liquid does not oscillate with respect to
the tank.

Let setting A;, calculated at a filling level 4,
through Ai(#). To calculate A(h + Ah) use value
Ai (h+Ah) for of volume T + T, where T is the in-
crement of volume, having a parallelepiped Fig. 1
shape with height A% and square base equal to the
area of the free surface of fluid at a rate of filling 4.

If the width of the parallelepiped of t° is equal to
2R(h), and the length a(#), the formula for calculating
the value can be represented as [3]:

2

T
Xl.(h)+azi(h)Ah |
A, (h+Ah) = e AR Aa
R(h)  a(h)
where

AR =R(h+ Ah)—R(h);
Aa=a(h+Ah)—a(h).

Knowing the parameter A;(/) can determine the

mass of the pendulum moving at an arbitrary fill
level A

where p is the density of the liquid.

Coordinate [; point of application of hydrody-
namic forces is given by the case of longitudinal
oscillations of a is defined by the equation

2
s
(s A, (h)+7a2(h)Ah
" 1+, (h)Ah
We can now define A, (h+Ah);
1+§+2% 1
L (h+AR)=12, () R___a

AR

.
xl(h)+7xl(h)+%Ah 1+

IV. RESULTS

The calculated parameters of the pendulum model
of longitudinal oscillations of the liquid at different
levels of filling are presented in Figs 3, 4, and 5.

If low depths filling the suspension point is lo-
cated above the free liquid surface, then filling depth
increases sharply and goes down at great depths
filling located at a distance below the free liquid
surface. If the position of the pendulum suspension
point to determine the relative bottom of the tank, it is
by increasing the relative depth of filling first des-
cends and then increases practically linearly.
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Fig. 3. The dependence on the length of the pendulum
on the relative depth of filling
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Fig. 4. The dependence of frequency of oscillation
of the fluid filling the relative depth
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Fig. 5. The dependence of the pendulum mass 1 pitch
oscillation on the relative depth of filling
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If the mass of the pendulum attributed to the total
mass of the fluid filling the tank with an increase in
the depth filling the relative mass decreases mono-
tonically.

V. CONCLUSION

Parameters pendulum models are used to study the
stability of the longitudinal and lateral movement of
the aircratft.

The results of numerical-based parametric studies
linearized mathematical model agreed with experi-
mental results only for the case of small lateral os-
cillations of the liquid in the tanks of rectangular
shape within the range of 0.2 — 0.6 relative tank
filling. Mathematical model of liquid oscillations are
starting to address this problem and create a new
mathematical models that take into account the dif-
ferent geometry of the tanks, as well as the properties
of fluids and the construction of additional devices
within the tank.

Kemenyash Yuriy. Assistant Professor.

Further use of the results pendulum model fluid
vibrations in fully filled tanks may be used for opti-
mization problems dampers accommodation [4].
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