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Abstract—We are studying the convergent network operation process with various types of traffic being
transferred. As a mathematical model of the convergent network we are using the retrial queuing system
with the flow of demands of different types. During the modelling we are taking into account such a fea-
ture of the information transfer process as the diversity of the input flow and presence of the retries for
data transfer. The formulas determining the transition probabilities of system states have been developed.

Index terms—Convergent network; orbit; transition probabilities; flow of different types; retrial queuing

system.

I. INTRODUCTION

The current trend of convergence of different
types of networks, such as computer and telecommu-
nication, has led to the need to transfer all types of
traffic via network. Convergent network — is a com-
puter network that combines the transfer of voice and
data, including multimedia, video, etc., through a
common channel. The effective operation of the
convergent network requires sufficient bandwidth
with the possibility of videoconferencing and ac-
cessing corporate resources, services and databases.

The transferred traffic in a convergent network is
divided into the traffic which is sensitive to packet
transfer delays, and the traffic sensitive to packet
loss and distortion. Traffic which is sensitive to
packet transfer delays includes: E-mail applications;
text editor, working with remote files; voice transfer
applications — when exceeding the delay variation
threshold the voice quality degrades dramatically;
applications hypersensitive for delays — managing
technical objects in real time. Traffic sensitive to
data loss includes: text documents, program codes,
numeric arrays, as well as all the traditional network
applications (file services, database services, etc.).
Resistant to data loss applications are multiple appli-
cations transferring traffic with information about
the inertia physical processes, such as applications
that work with multimedia traffic [1].

Research problems regarding efficiency of the
data transfer in a convergent network, taking into
account the diversity of traffic, require creation of
mathematical models, taking into account the sto-
chastic nature of the processes. For modelling of real
processes taking place during transfer of different
types of information in convergent networks it is
recommended to use the single-channel retrial queu-
ing system with the flow of demands of different

types.

II. ANALYSIS OF STUDIES AND PUBLICATIONS

In order to analyze and study the functioning of
various networks there are queuing system models
with retransmission [2]. The input demand flow
enters the service channel. The demand received by
the system is being served immediately in case there
is a free service channel. Otherwise, when the de-
mand reaches the system and all service channels are
busy, it goes to the orbit. Orbit is a virtual environ-
ment which accumulates demands that did not get
access to the service channels at the time of entering
the system. Demands that are in orbit are trying to
get back to the system to get served after determinis-
tic or random time period. This forms the secondary
flow of demands. Demand which enters the system
after repeated calls is served as any other demand
that enters the system for the first time. In case
there's a free channel such demands are immediately
served and form the output flow.

The principal difference between retrial queuing
system and classical queuing system is that demands
that enter the system and find the service channel
busy - do not leave the system but go for retransmis-
sion in order to try to occupy the channel later.

Note that the presence of repeated attempts is an
essential feature of information transfer systems and
networks. Ignoring this effect can lead to significant
errors while receiving their functioning indexes.
Consideration of repetition in constructing mathe-
matical models of such systems makes them more
adequate and allows to get new operation indicators.

A large number of papers are devoted to retrial
queuing systems research. The most common for
such systems is the model presented in the review
article by T. Yang and Y. G. C. Templeton [3]. For
example, the paper [4] studies the M/M/1 system
with recurrence of demands serving two types of
demands. And the paper [5] studies the priority
queuing system with recurrence. In [6] 1. M. Kova-
lenko and O. V. Koba are classifying typical classes
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of retrial queuing systems that originate from the
practical problems. They give a brief comparative
description of different classes of retrial queuing
systems. In [7] an algorithm for statistical mode-ling
of GI/G /m /0//1/ G multi-channel queuing system
with returns has been developed, with the purpose of
evaluation of the indicators of the system operation
effectiveness, in particular, for evaluation of station-
ary probability of demand losses. The values of the
stationary probabilities of denial of service have
been obtained. A significant research of retrial queu-
ing systems is presented in papers by D. Y. Kuzne-
tsov, A. A. Nazarov, V. V. Anisimov, L. Lakatosh
and others [8] — [10].

Thus, the retrial queuing system models can be
used in solving the problems of technical design of
modern communication systems that require calcu-
lating the probability-time and economic indicators
of their functioning.

In this paper for the purpose of modelling of
convergent network operation process it is proposed
to use the retrial queuing system with regard to such
a peculiarity of data transfer as the diverse nature of
the input flow.

III. STATEMENT OF THE PROBLEM

A single-channel retrial queuing system is consi-
dered. The initial input flow consists of demands of
s types. Let us define system states as:

k=(ky kys s k)
0, the chanelis free,
where k; =4 j, the chanel servesa demand
of the jth type (j=1,2,...,5).
For 1< j<s, k; is the number of demands of jth

type in the channel and in orbit, A, (%)A+0(A) is
the probability that a demand of jth type will arrive
(from the outside of the system) in a small interval
(t,t+ A) provided that at the time ¢ its state is k.
Denote by k(r) = (ko (1),k, (1)....k, (¢)) the state of
the system at time ¢ ; by ¢, the terminal time of the

0
SFJ—J’ 7z(oar]:
D156, + 4, ()]
i=l1
_ W
u(F, T)= o,

S

2056, + 4, (7]

i=1

0 otherwise.

nth service; and by k., =(0,k k,) the state of

N S
the system at the time 7, + 0.

Let us define B,(x) as a distribution function of
the holding time of a demand of j th type.

Let |k.|= ko +.+k,
where N is a given natural number.

If a demand of j th type does not appears in the

channel immediately, it arrives in orbit, whence it
returns in an exponential time with parameter

6j>0.

The problem is as follows: deduce formulas to

and always ka|< N ,

evaluate the steady-state distribution p(%) on the set
Y, of states of embedded Markov chain (%n) .
III. EXACT FORMULAS

Let us write the steady-state equation:

p(k)=>" p(rp(r.k), ke,

rely

> plky=1,

zeYO

(1)
2)

where p(l;) ) is the steady-state probability of state
k, p(, l;) is the transition probability from 7 to
k inone step.

Let us consider system states at the moments
t, ,+o, and ¢, +o,t, +o, where ¢, is the
(n—1) th moment of the termination of service of the
demand, t; is the nth moment of the beginning of
service of the demand, and, ¢, is the nth moment
of the termination of its service. These states are
equal, respectively, to 7 =(0,7,...,r,) and
I=(lylyynl)), 1<l <5, k=(0,k,....k,) .

Denote by u(;, Z) the transition probability from

the state 7 to the state /; and by v(i,%) the transi-

tion probability from the state / to the state & .
From the description of the system operation we
have

1<j<s, 3)
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Let us define the transition probability v(l_, l;)
from the state / to the state &

v(7,k) =TdBj(x)w(x,z‘,1€ ), (4)

where [ =(j,l,...0.), 1<j<s; w(x,l,k) is the
transition probability from / to k provided that
t,—t =Xx.

Let us determine the probabilities wy(x, 1, l;) as-
suming that l_=(j, l,....,l)), where 1< j<s, and
[;20, 1<i<s, [;21. For i e{l,..,s} denote by
v, the number of new demands of ith type arrived in
the system in time x. Then we obtain the equations

k=L +y,1<i<s,i#j, k=0L+y,-1. (5

From here we deduce the necessary conditions

for possible values of ;:

k20, 1iss, i#j; k21, -1.

For given [ and k satisfying these conditions
Y, =1, — k, new demands should arrive in the interval

of duration x for all and

(t,,t,)
Y, =1, —k, +1 new demands for i = j. The probabili-

i#],

ty of this event is y(x, 1, l;). The total number of
new demands is d =k |—|1 |+1.
For d =0 we have

v(x, 1,k)=exp {—iki(l_)x} .

For d >0 we have

w1 k) =2 v (x 1, k), (6)

where I' are all possible chains (i,...,i;,), com-

posed from the numbers 1, 2...., s and satisfying the
following conditions.

Consider a statel_z( Jsls.sl) . Recurrently de-
termine /,, 1<m<d, where Zz 1+ e(i;) (in what
follows, e(n) is the vector with unity at the n-
place and remaining elements being zero):

I =1 +e(,), 2<m<d; k+e(j)=1,.
Then

v G, k)= (DO, (D). (1)

] exp =[O ), —x) + o+ M) xy) ] i,

0<x)<..<x, <x
where 4(1) =Y 4,(7).
i=1
V. THE FINAL FORMULA FOR TRANSITION

PROBABILITIES

Let us write the final formula:

p(F. R =X uE, v, k), ®)

where 7 =(0,7,....7.), k=(0,k,...k), [ =(j,

l,...1), je{l,..,s}. The probabilities appearing in
the right-hand side of formula (8) are defined by
formulas (3), (4), (6), and (7). After p(7,k), is cal-

culated, it remains to find the solution of the system
of equations (1), (2) to determine the steady-state

probabilities p(l;) of the embedded Markov chain.

VI. APPROXIMATE FORMULAS

The calculations are considerably simplified if a
two-sided estimate of the integrand based on the in-

(7

equalities 1—a <exp{—a}<1 (where a is the ex-

pression in square brackets) is used in integrals (7).
For example, for d =1 the integral factor on the
right-hand side of formula (7) is estimated as follows:

[ (=2 =2 —x))dx,

0<x; <x

< | exp{~[ M(0)x, + MI)(x—x) |} dy, < [ ax.

0<x; <x 0<x; <x

Simple evaluations yield the two-sided estimate
2
- -\ X
x— (M) + 0 ))7

< [ exp{-[MD)x + 1) (x - x) ]} dy, <x.

0<x<x

Assume now that y(x, 1, l;) admits a two-sided
estimate

f[x—kx—;J<\|/(x,l_,/?)<fx,
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where A is a small parameter and f'is some function.
By equation (4)

Otj2

ST, —h 5

<v(l_,/?)<frj,

where T, = | XdB; (x), &, =[x"dB, (x) .
0 0

If

NN ©)

1,

the lower- and upper-bound estimates of v(l_, l;)

asymptotically approach each other. Condition (9)
can be interpreted as a small probability that two or
more demands arrive while one demand is served.

VII. CONCLUSIONS

For single-channel retrial queuing system and
flow of demands of different types the formulas are
defined to calculate transition probabilities of the
embedded Markov chain. Thus, with the help of
these formulas we can define the operational indica-
tors of convergent network with different types of
traffic (diverse traffic).
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O. M. KyuepsiBa. MoaenoBanHs npouecy ¢pyHKIiOHyBaHHS KOHBEPIreHTHOI Mepeski

Jocnimkeno nporec pyHKI[IOHYBaHHS KOHBEPIeHTHOI MEpexi 3 Iepeiavero pizHoMaHiTHOro Tpadiky. B skocti mare-
MaTHYHOI MOJIeJIi KOHBEPTE€HTHOI MepeXi BUKOPUCTAHO CHCTEMY MacoBOro 0OCITyrOBYBaHHS 3 IIOBTOPEHHSM 1 TIOTOKOM
PI3HOTUIIHHX 3asBOK. [Ipy MojemOBaHHI BpaXxOBaHO TaKy OCOOJIMBICThH MpPOIECY Mepenadi iHpopMarii SK pi3HOTHII-
HICTH BXiJIHOTO MOTOKY Ta HAsIBHICTH IIOBTOPHHUX CIIPOO ITij Yac repenadi AaHuX. BuBeneHo GpopMysiu BU3HAYECHHS Te-
PexiIHUX WMOBIpPHOCTEH CTAHIB CUCTEMH.

Koarou4oBi ciioBa: KoHBepreHTHa Mepexa; op0iTa; mepexigHi HIMOBIpPHOCTI; MOTIK Pi3HOTHITHUX 3asBOK; CHCTEMa Maco-
BOr0 OOCITYTOBYBaHHS 3 TIOBTOPEHHSIM 3asIBOK.

KyuepsaBa Onbra MukonaiBua. Kauaunar ¢pisuko-MaTeMaTHYHUX HayK.
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