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Abstract—Currently, there exists a huge number of neural networks of different classes, each with its
own advantages and disadvantage. However, there aren’t a lot of focus on hybrid neural networks, based
on the combination of knowm topologies of neural networks. Modular organization principle seems to be
very promising, however principles of its module creation isn’t known and needs further research. The
present study, therefore, proposes some methods of hybrid neural network module creation and their

learning algorithms.

Index terms—Artificial intelligence; connectionist models; bidirectional associative memory.

I. INTRODUCTION

Main element of artificial intelligence system is
an artificial neural network — a mathematical model
and its hardware or software execution, based on the
principle if organizing and functioning of biological
neural networks (nerve cells of a living organism).
This concept originated in the study of the processes,
occurring in the brain and during tries to simulate
there processes. Like human beings, artificial neural
networks can discriminate, identify, and categorize
perceptual patterns. Hybrid neural system is a

system, which uses more than one method of
simulating human intellectual activity. So, in this
paper we propose a modular approach to the
organization of hybrid neural networks, according to
which the elements of created topology are modules,
whose structure includes neural networks of
different topologies: a self-organizing network, the
basic neural network (it’s topology is chosen, basing
on the required task) and bidirectional associative
memory (Kosco’s neural network). It’s structural
scheme is presented on Fig. 1.
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Fig. 1. Structural scheme of neural network module

In the [1], learning algorithm of hybrid neural
network module is proposed, which includes
following learning methods:

— Learning self-organizing neural network by the
reference sample X and bidirectional associative
memory by output reference sample Y.

— On the basis of tuned self-organizing neural
network and bidirectional associative memory we
determine reference output sample X.' by reference
input sample X (reference input sample base neural
network) and the input reference sample X." by the
output reference sample Y (reference sample of the
base neural network).

— Learning basic neural network by the reference
input and output samples X.' and X.".

Self-organizing neural network learning isn’t very
challenging. In this work bidirectional associative
in the module is

memory learning, included

described. This single-layer feedback neural network

is based on two ideas: the adaptive resonance theory
of Stephen Grosberg and auto-associative Hopfield
memory.

Bidirectional associative memory (BAM) is a
heteroassociative: input vector follows with a set of
neurons and the corresponding output vector is
generated as a set of different neurons. As a
Hopfield network, BAM is able to generalize,
emitting correct responses, despite the distorted
input signals. In addition, adaptive versions of BAM
can be realizes, which can distinguish a master
image from a set of noisy signals. This features are
closely reminiscent of the process of human thinking
and they allow artificial neural networks to make a
step towards the real human brain simulation.

This work shows the possibilities of BAM
network learning with the introduction of a recency
parameter, which gives the network huge gains in
performance, compared to regular networks at a
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price of lowered memory storage limit. Also, with
this inclusion the network requires less iterations.

II. TASK STATEMENT

Bidirectional associative memory structural
scheme is shown in Fig. 2 where x(0) and »(0)
represent input and output signals, W and V are the
weight coefficients and ¢ is the current iteration
number [2].
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Fig. 2. Bidirectional associative memory structural
scheme

This network type was developed by Chartier &
Boukadoum and its unique feature is a different
matrix set for each neuron layer, so it is possible for
it to correlate different types of input signal patterns,
such as bipolar or real-valued ones. The structure is
a set of two Hopfield neural networks joined
beginning-to-end style, which grants the information
flow to both sides without interference, so it can be
learned in both ways: from both input and output
signal sets [3]

The task of this work is to learn network with a
set of reference output signals and to determine
weight coefficients V to determine a set of reference
input signals and to determine network weight
coefficients W backward, by the set of reference
input signals.

III. ACTIVATION FUNCTION

The activation function is based on the classic
Verhulst equation extended to a cubic form with a
saturating limit at + 1:

Vi,...,N,y,-[m] = f(ai(t) )’

1, if a, >1,

i(t)

=J-1, if a, <-1,

i(t)
3
(®+1a,,, —day,, else

and

Vi,...,M,x,-[m] = f(bi(f))’

1, if b, >1,
={-1, if b, <-1,
&+b,,, — Sbf(t) , else,

where N and M are the number of units in each
layer, 7 is the unit index, & is a general transmission
parameter and a and b are the activations. Figure 3
illustrates the shape of the transmission function for
6=0.2.
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Fig. 3. Transmission function for & = 0.2

There are no asymptotic behaviors in this type of
activation function, meaning no false roots. Also,
this function has the advantage of exhibiting grey-
level attractor behavior [4].

IV. LEARNING RULE

There exists a possibility to modify the learning
rule, using a Hebbian/anti-Hebbian approach:

W<k+1>=W(k)+n(y<0)—y(t))(x(0)+x(z))T;(1)
V(k+1)=V (k) +n(x(0) - x(1)) (1(0) + y(1))",

where 1 is the learning parameter controlling for the
speed of convergence and k is the learning trial
number. Connection weights are initiated at 0 and
x(0) and y(0) are the initial inputs to be associated.
The network has converged when x(0) = x(f) or
y(0) = y(f). Thus, each weight matrix converges
when the feedback is equal to the initial inputs. In
the BAM, the network convergence is guaranteed if
the learning parameter 1 is set according the
following condition:

: e

n< , 0
2(1-28)max[M,N] 2

where M and N are respectively the dimensionality
of the input and its association. The 1 parameter was
set to a lower value than the threshold found in (2)
for every simulation performed. The learning rule
(1) acts much like a long-term memory where the
learning convergence is longer, but exhibits an
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increased storage capacity and has a better-defined
attractor.

V. LEARNING RULE MODIFICATION

In order to lower the time to learn associations,
the memory capacity has to be decreased [2]. One
way to accomplish this is by introducing a recency
parameter (0 <[ <1). This parameter removes from
the memory associations that are not reinforced
enough. The resulting learning rule after
modification is given by:

W (k +1) = I (k) +n(3(0) — y(t)) (x(0) + x(1))", .

V (k+1) =BV (k) +n(x(0) - x()) (»(0) + ¥(©)) ",

If B = 1 then the learning is accomplished in the
same fashion as in equation (1). This learning rule
can be simplified to the following hebbian/anti-
hebbian equation in the case of auto association
where y(0) = x(0):

T

“4)

T

W (ke +1) = BV (k) + (x(0)x(0)" —x(1)x(1)")

V(k+1) =BV (k) +n(»0)»(0)" = y()y©)")
VI. METHODOLOGY

Learning was carried out according to the
following procedure:

1) Random selection of a pair of patterns (x(0)
and y(0)).

2) Computation of x(¢) and y(¢) according to the
transmission function (1).

3) Computation of the weight matrices update
according to (3).

4) Repetition of steps 1) to 3) until all of the pairs
have been presented.

5) Repetition of steps 1) to 4) for an a-priori set
number of epochs.

The transmission parameter () was set to 0.2
throughout the simulations and the number of
iterations to perform by the network before the
weight matrices were updated was set to = 1. The
network was tested on an auto-association and
hetero-association task that consisted of 26 stimuli
placed on 7x7 grids (Fig. 4). The auto-association
task was an association of uppercase stimuli only,
whereas the hetero-association consisted of the
association between uppercase and lower case
stimuli. The recency parameter () was set to 0.99
and 0.995 for the rapid setting and at 1.0 for the
standard long-term setting. In the rapid setting,
instead of presenting all the patterns at once, the
network was limited to only one subset at a given
time. In other words, rather than learning all stimuli

in one epoch, the network limited itself to grouped
associations of a maximum of 5 associations.

Following the learning phase, the network was
tested on a recall task according to the following
procedure:

1) Selection of an input pattern x(0).

2) Computation of (1) according to the
transmission function (1).

3) Comparison with the target value y(0)

4) Repetition of steps 1) to 3) until all of the
patterns have been presented.

In this situation a given pattern iterated until a
steady state. Recall performance was recorded for
the level of flipped pixels varying from 0 to 24 (0 to
~ 50%). The network was tested on grouped
associations of 2, 3, 4 and 5 patterns. The network
was tested 200 times for every condition and the
average performance was computed [2].
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Fig. 4. Patterns used for the simulation
VII. RESULTS

Figure 5 presents an example of the first 10
patterns recalled in a noiseless (0 flipped pixel)
situation for both auto-association and hetero-
association tasks. The orange dashed lines represent
the demarcation between previously learned
associations and the associations that have just been
learned. The model was compared to the results of
Hopfield's model (1982) as well as Kosko's (1988).
For both networks, contrary to the BAM, there are
no memory traces between the past and current
association. In other words, the connection weights
are reset to zero between the learning of a given
group. The connection weights had to be set to zero
since both Hopfield and Kosko's model cannot
perform the task otherwise as they suffer from
memory overload. It is as if we are comparing the
performance of a single BAM with several
independent Hopfield or Kosko models. Although
this situation is different, it was included for
comparison purposes using optimal conditions for
Hopfield and Kosko.

The results (Fig. 5) for the auto-association of the
short-term memory show that previously learned
associations tend to be erased as new associations
are made, particularly when the correlation is very
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high between two patterns (for example, the
stimulus E and F). When patterns are presented in
groups of two, the shortterm network makes no
mistakes in associating the patterns presented within
the step; this also holds for conditions where
patterns are presented in groups of 5. The Hopfield
network shows perfect performance when the input
patterns are learned in groups of two. However,
when presented in groups of 5, the network makes
several mistakes even in the absence of noise. These

results are even more disastrous for hetero-
associations, where the network can barely recall
any associations. Hence, Kosko's network is not able
to learn any of the associations grouped in pairs,
whereas the short-term BAM is able to learn all
associations whether they are presented in groups of
2 or 5. Results for the standard BAM were not
shown because it could learn and recall perfectly in
all of the previous situations.
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