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Abstract—A stability condition is derived for a retrial queueing system with a Poisson input with
parameter A and constant service timeT. If the virtual waiting time is less than a constant a, then
the call can be serviced; otherwise, it is repeated in exponentially distributed time or is lost with a
probability q. The notion of system stability is defined. Two theorems are proved, defined the

conditions for stability of system.
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I. INTRODUCTION

Retrial (return call) queuing systems theory have
rapidly developed since the 1980s.

The classical queuing theory (Gnedenko's school
made a substantial contribution to its creation) con-
sider queues without call blocking; thus, given an
idle channel, a call being in the system is forwarded
to this channel immediately. Such models are ob-
viously an idealized pattern of real processes. In the
majority of retrial models, especially those describ-
ing modern computer systems and networks, a call
is blocked from service until conditions for its ser-
vice are provided, even if there is an idle channel.
An important type of blocking systems is retrial
(return call) systems. For example, in ordinary tele-
communication, a call that found all the m devices
busy is rejected and, therefore, a queue does not
form; however, the rejected call retries to connect to
the subscriber in a random time, i.e., a flow of re-
peated calls forms in the system. After each failed
retry, a call (either newly arrived or repeated) can
leave the system with certain probability.

If a telephone station is modeled, retrial (re-
peated call) queues are implied; in other cases with
a similar access to service (for example, computer
systems and networks, airports) return call systems
are assumed.

An example of a return call system may be a
model of an aircraft landing system. If the runway
is occupied while an airplane is landing (or for any
other reasons), the aircraft is sent to a waiting zone
to retry landing in a time multiple of some constant
(in sufficient approximation) 7.

A return call is also an inherent attribute of the
models of computer networks and systems. For
example, the operation of a random multiple-access
communication network can generally be described
as follows. Let there be several user stations (USs)
that try to communicate with each other using a
shared transmission medium. A message arrived at

the medium from the US and found it free, starts to
be transmitted immediately; if the message has
arrived when another one is transmitted, it is as-
sumed to face a conflict, and both messages (newly
arrived and that being transmitted) cease to be
served and need a repeated transmission. A conflict
signal propagates in the medium. Thus, stations that
sent messages without delivery confirmation are
notified that the information needs to be transmitted
again. Messages arrived from USs within the con-
flict notification interval also need retransmission.

Noteworthy are the best known monographs [1],
[2] and reviews [3], [4] on retrial queues. The re-
cent literature on queuing theory also pays attention
to return call queuing systems (see, for example,
[5], [6]). Retrial queueing systems are widely used
for simulation of operation of telephone stations
[7], computer networks, telecommunication and
computer systems [8], [9], air traffic control sys-
tems [10], and many other real systems.

II. PROBLEM FORMULATION

Yang and Templeton [3] give the following de-
scription and coding of retrial queues.

Let there be a queuing system with Poisson's in-
put flow with the parameter A and s (s>1) iden-
tical service channels (servers); the service time for
all the channels is random with the distribution
function B(x). There are m—s(m>s) waiting
places in the system. If there are free servers, the
call arrived is immediately served; otherwise, it is
immediately forwarded to free waiting places (if
any). At the same time, all the channels and waiting
places are occupied when a calls arrives, the call
leaves the system forever with probability 1-H,or

for a random period of time with probability H
and will make a new attempt to be served.

The calls that come back to the system and make
an attempt to be served are said to be in the orbit.
The orbit may have either finite or infinite capacity
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O. If O is finite and occupied, the call that tried to
get into the orbit leaves the system forever. It is as-
sumed that a call in the orbit will retry, with proba-
bility 0Az+ o(At), to get into the system within the

time interval (¢, ¢+ At), by forming an independent

call flow with the parameter 6. Any call returned to
the system is processed as if it arrived for the first
time: if there are free channels or waiting places, it is
served immediately or is queued, respectively; if all
the servers and waiting places are busy, it leaves the
system forever with probability 1-H, (if it is the
kth independent return) or goes to the orbit (if it is
free) with probability H, .

In the classical Kendall notation (see, for exam-
ple, [11]), retrial queues are described as
A/B/s/m/O/H, where A and B are the distribu-
tions of interarrival times and service times, respec-
tively, s is the number of servers, m is the number of
places in the queue plus the number of servers, O is
the orbit capacity (the maximum number of calls
that may stay in the orbit), A means that it is a model
with losses, which can be described by a series (
H,,H,H,..). If H =1 for k>0, the system
becomes loss-free In this case, H in Kendall's nota-
tion is written as NL (no loss). If H, =a <1 for

k >0 , the system is called a system with geometric
loss and H is written as GL (geometric loss).

If m, O, and H are absent in Kendall's notation, it
is assumed that m=s, O =00 and H = NL .

Let us consider a queueing system with one ser-
vice channel and a limited demand buffer. The pa-
rameter of the input Poisson flow is X , and the ser-
vice time 1 > 0 is constant. Let us define the follow-
ing random processes: N(f)is the number of de-
mands stored in the buffer, including that being ser-
viced; if N(¢)>0, then X (¢) is the residual time of
servicing the demand in the channel. It is obvious
that a newly arriving demand should wait for service
during the time N(¢)t+ X(¢). If this time is less
than a constant a , the demand starts being serviced;
otherwise, it is rejected. The rejected demand is lost
with the probability ¢ and comes back again with
the probability p=1-¢g in a time exponentially
distributed with the parameter v . Thus, for ¢>0
the number of attempts to obtain service is a geome-
trically ~ distributed random  variable  y;

Pih=ki=qp*", k=12,... If g=0, then the

number of retrials is unlimited. The times between
retrials of one demand are independent. When ¢ =1,
the system under consideration will have a limited
(by a) waiting time. It can also be regarded as a
limited-buffer system used in models of computing
systems [8].

Our task is to establish the conditions of stability
of the system. Note that the present paper is appar-
ently the first to jointly allow for the boundedness of
the waiting time and that of retrials.

III. STABILITY CONDITIONS

Denote by N,(¢#) the number of available de-

mands that have not been placed in the buffer, i.e.,
those that will return to the system. By the well-
known terminology [1], these demands are on the

orbit. Thus, there are N,(t)+ N(¢f) demands in the

system. According to the definition, by the stability
of the given random process will be meant the uni-
form boundedness in probability

Ve>03IN:VE>0{P{N,(t)+ N(t)> N} <e}.

For the sake of determinacy, we assume that the
input flow starts at t =0, i.e., N,(0) = N(0) =1.

Theorem 1. For g >0, the systems is stable for
anyA ,T and a <.

Proof. Denote by ¢ the arrival time. Let t; .be the

maximum time during which a demand exists, i.e.,
the instant of the last return of the demand, if it has
not been placed in the buffer before. Let us define an

impulse U,(t)=1for ¢, <t¢<t,, outside this interval
U,(t)=0.

Denote ®, =¢, —¢, If the number vy, of retrials of
the given demand is equal to k , then o, is the sum

of k —1exponentially distributed random variables
with the parameter v . Then the mathematical ex-
pectation of these quantities is determined by the
equation

Mo, =Y qp" ' (k=1)/v=plvg)=A<w.
k=1

Let ®(x) = P{w; > x}. Then
MN,(0) < j.MD(t — x)dx, (1)
0

where Adx is the probability of arrival of a demand
in the interval dx, ®(f—x)is the probability of
existence of an impulse of the given demand at the
instant 7. From (1), we obtain
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MNy(t) < kj'd)(t)dt =)\ ()
0
Since N(¢) is limited N(¢) <c, from (2) we have
P{Ny({t)+N(t)>N}<(Ad+c)/N. (3)

The right-hand side of (3) tends to zero as N — o
irrespective of 7.

Theorem 2. If ¢ = 0, p=At<l1, then for any
a,0<a <o the system is stable.

Proof. For a =00 this result is well known [11],
therefore, let us consider the case of finite a .

During operation of the system, alternation of
unavailability intervals (when a demand cannot be
placed since the virtual waiting time W(¢) >a) and
& (when W(t)<a) takes
place. Each unavailability interval lasts no more than
7. The availability interval depends on the number
of rejected demands. Let at the beginning their num-
ber be k > ¢. Since the number of accepted demands
is N(t)<c, is stochastically less than the time of

availability intervals

waiting, for arrival of ¢ primary or secondary de-
mands

E<& i T &ihotyy Tt Gotthmcrnyvs

where the terms in the right-hand side are indepen-
dent exponentially distributed random variables with
parameters designated by subscripts. From here
ME<cl/(k—c+1)v.

The probability that at least one new demand will
be accepted in this interval is no greater than
c=cAM(k—c+1)v.

These properties are also fulfilled for the rest of
the availability interval after some instant ¢ by virtue
of the property of the exponential distribution.

Let us consider two instants of time: ¢ and
t+mt. Let, Ny(t)=k >2(m+c) and the previous

history of the process to the instants ¢ be fixed. No
greater than m+ ¢ demands can be accepted during
the interval (¢, t+mt), and, therefore. The number
of availability intervals is no greater than m+c. The
probability that a repeated demand will be placed in
queue in the ith availability interval is no less than

ch ch

l-—>1-—
(k—c—i+2)v mv

Let us estimate the mean value of the total length
n of availability intervals
(m+c)c

Mn <
mv

Since service is continuous within the unavaila-
bility intervals, the mean operating time of the ser-

(m+c)c

vice channel is no less than mrt— . From

mv
here it follows that for a sufficiently large m the
average number of demands accepted in the interval
(t,t + mt) is greater than m(1—¢). Summing up, we
obtain

M Nt +mt) = Ny () | Ny (1) = k}

4
Skmr—m(l—g)+w, @
mv

for k>2(m+c).

The first term on the right-hand side of (4) is the
average number of new demands in the given inter-
val, the second term is the estimate of the average
number of accepted demands, and the third one
(compensating for the second term) is the estimate
of the average number of new demands that have
been accepted. For a sufficiently large m, the right-
hand side of (4) is less than —&, (& > 0), taking into

account the fact that At <1. For any & >0, we have
M{N,(t+mt)— N,(t)} < Amt. 5)

By virtue of the Mustafa criterion [12], stability
of the process N, () follows from (4), (5).

IV. CONCLUSIONS

Queueing system M/D/1 with limited by constant
a waiting time are considered. However, if the wait-
ing time is less than some constant a, then the call is
accepted for servicing, otherwise is rejected. A re-
jected call with probability ¢ is lost, and with the
probability 1—¢g of back through time, distributed

by an exponential law. The notion of stability of the
system are defined. Two theorems are proved, de-
fined the conditions for stability of system. The re-
sults obtained can be used when designing the com-
puter and telephone systems.
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