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Abstract—In this article describes the method for determining the controller gains in water supply system
in the stabilization mode. It is believed that the signal from the pressure sensor is linear. Implementation
of the method makes it possible to obtain significant coefficients without performing a lot of computa-
tions, which is important for on-board systems with microcontroller core.
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I. INTRODUCTION

To ensure optimal control in stabilization mode
the state of the water supply system should deter-
mine the coefficient K(z). The coefficient K(¢) de-
termined from the solution of the stochastic differen-
tial equations Riccati type. The solution of this equa-
tion system requires a significant amount of calcula-
tions in real time, which is associated with a number
of deficiencies in the on-board systems. Algebraic
Riccati equations appear in many linear optimal and
robust control methods such as in Linear Quadratic
Regulator (LQR), linear-quadratic-Gaussian (LQG),
Kalman filter, #* and H”. One of the main methods
in linear optimal control theory is the LQR in which
a state feedback law is designed to minimize a qua-
dratic cost function. In continuous-time domain, the
optimal state feedback gain, K, is calculated such
that the quadratic cost function. Solving this equa-
tion often very difficult or even impossible. Thats
why for water supply control systems needs to find a
simpler method that provides optimization of cost
function.

II. PROBLEM STATEMENT

In traditional LQR theory, it is a standard as-
sumption that the control weighting matrix in the
cost functional is strictly positive definite; for exam-
ple, see Anderson and Moore [5]. In the determinis-
tic case, this is necessary for there to exist a finite
optimal cost that is achievable by a unique optimal
control. In fact, this assumption means that an ener-
gy or penalty cost is associated with the control that
tries to drive the system state as close as possible to
a desirable position, which is clearly a sensible as-
sumption. Under this assumption, there is a tradeoff
between the closeness of the state from the target
and the size of the control, and the controller has to
carefully balance the two in order to achieve an
overall minimum cost. On the other hand, if the con-
trol weighting matrix is negative (which means that
the control energy is rewarded rather than pena-

lized), then the cost can be made arbitrarily negative
by choosing a sufficiently large control input (as-
suming that there is no restriction on the control
size); that is, the larger the control size, the better.
Indeed, this is no longer an optimization problem
because it does not involve making tradeoffs. The
problem is trivial or incorrect. Mathematically, the
cost functional becomes concave when the control
weighting matrix is negative. Minimizing this cost
function over the whole space is meaningless (trivi-
al).The extension of deterministic LQR control to
the stochastic case, or the so-called LQG problem,
has been a notable and active research area in engi-
neering design and applications (see [4], [3] and the
references therein). In the literature on the stochastic
LQR problem, however, positive definiteness of the
control weight is generally taken for granted. In such
a case, there appears to be little difference between
the deterministic and the stochastic LQR problems.
Indeed, the optimal control for both of these prob-
lems is given by a linear state feedback, the feed-
back gain being identical in both cases and deter-
mined by the solution of a backward Riccati equa-
tion. The goal of this work to determine the control
signal without using Riccati equation.

III. WATER SUPPLY CONTROL SYSTEM
DESCRIPTION

Let the water system describes by the matrix dif-
ferential equation

x(1)=A(t)x(r)+B(r)u(e), (1)

with A is the matrix, nxn; B is the matrix nxm; X is
the vector of the measuring coordinates of water
system nx1; is the u — matrix mx1.

It’s need to find a control signal that minimizes
the function

J(x,u)= %I[XT (HQ(Hx(t) +u’ (HR(t)u(t)]dt -

+ %XT(tk)SX(tk),
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with Q, R, S are symetric matricies; R is the posi-
tively defined matrix; Q, S is the positively semide-
finite matrix.

In [2] was shown that optimal control u(¢) in sta-
bilization mode with minimal energy consumption
determined by the equation of the form

u' (H)=-R'@OB"P()x(1), (3)

where P(f) must satisfy the solve of matrix differen-

tial equation Riccati type. It causes problems when

for calculation we use on-board microcontrollers.
Introducing designation in (3)

K(t)=-R™(H)B"P(), 4)
equation u'(¢) transfer as follows

u' () = K@O)x(). (5)

The aim of this study is to determine the value of
K(?) to defined structure of the input and devoid of
these shortcomings.

Let the input of the measuring system signal
mixed with additive noise ¥(n), that is Z(n) = X(n) +
+ W(n), with V(n) is the random variable with nor-
mal distribution, correlation function which is

P(n)= Fd(n,h).

I, n = mh,
d(n,h) =
0, n#mh.
Consider the type of signal
o(n)=X,+ X h+..+ X, h", (6)

with /# sampling step.

Let us consider the system parameters for linear
signal, i.e. o(n) = Xy + Xjh. In this case, the signal
can be written as a system of difference equations

Xo(m)=X,(n=1)+X,(n-1)h,
X, (n)= X,(n-1).

with i = t(n) — t(n — 1).
Introducing designation

X, = [Xo (”)J;
X,(n)

( ) [1
F(n,n—-1)=
0

(7

h
1 b

resulting system of equations (6) considering mea-
surement errors can be written as
X(n)=F(n,n-1DXm-1)+T(n,n—-1)W(n-1)with
n =1, 2 is the discrete points of measurement data;

X(n) are sensor readings vector; F(n, n — 1) is the
state transition matrix; I'(n, n — 1) is the perturbation
transition matrix; W(n, n — 1) are the sequence of
Sensor errors.

If the surveillance system we identify so that the
input value X(n) satisfies

A A T .
M {[X(n) ~X(m) [ X(n)-X(n) ] } = min,
then optimal signal evaluation as written
X,(n)=X,(n-1)+hX,(n—1)

+ K ([ Z(n)— (X, (n) + hX,(n-1))], ®
X, (n)=X,(n-1)+K,(n)
[Z(n) (X, (n) + hX, (n=1))].

For us it is important conditions under which the
error signal between the assessment X (n), and

measured signal Z(n) will be minimal. The equation
for errors AX(n) gets by subtracting from the system
(7) the system (8)

AX,(n)=AX,(n-1)+hAX,(n-1)+ K, (n)
[V =(AX (n=1) + hAX (n=1))]; )
AX (n)=AX,(n-1)+ K,(n)[V —(AX(n—1)
+hAX,(n—-1))]

Powering the first equation of (9) in the square
and using transaction expectation, we get

R,(n)=R(n-1)+K}(n)[R, +R(n-1)] 10)
-2K,(n)R(n—1),

with

R, (n) = M {Ax, (n)Ax, (n)};

R (n=1) = M{Ax,)(n=1)Ax,(n = 1)};

R,(n—1)=M{Ax,(n-1)Ax,(n-1)};

R,(n—1)=M{Ax,(n—1)Ax,(n—1)};

R(n—-1)=R, (n-1)+2hR,(n-1)+h*R,(n—1).

It is determines the value K;, where the error va-

riance R;;(n) will be minimal at this step. Differen-

tiating (10) by K; and equating to zero is obtains
product

—2R(n—-1)+2K, (R, +R(n—-1))=0,
obtain the required value K,(n)

R(n-1)

Ki(m= [R +R(n-1)]
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Similarly, K>(n) defined as

[R]2(n -+ hR,(n— 1)]

K= [R,+R(n-1)]

We can significantly reduce the number of possi-
ble calculations, if we assume that the signal from
the output of the pressure sensor is linear, that is
described by the equation

x(t)=a, +a,t.

In this case, the optimal filter described by the re-
lation [1]

& =a, +K,0[z0-4d1, 4(0)=0,
i, = K,(0[z()~4,]. 4,0)=0.
And parameters K;(#), K»(¢) defined as

t2

ROy
P 3
t

Kz(t):ﬁ i'
P 3

IV. CONCLUSIONS

Considered by the example of the theory of op-
timal filtering for derivation coefficient. Important is
that the computational complexity of the algorithm
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is much less than the solving Riccati equation. It
should be noted that for this example the input signal
is linear with adition white noise. It is possible to
reduce the number of calculations to determine the
coefficients gain K(f) in water supply system per-
haps, if we assume that the signal from the pressure
sensor is linear. Then the data rates possible to ob-
tain analytically without having to solve the equation
of Riccati type that has significant advantages for
implementation in on-board systems.
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