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Abstract—The study is directed towards development of adaptive decision support system for modeling 
and forecasting nonlinear nonstationary processes in economy, finances and other areas of human 
activities. The structure and parameter adaptation procedures for the regression and probabilistic 
models are proposed as well as respective information system architecture and functional layout are 
developed. The system development is based on the system analysis principles such as adaptive model 
structure estimation, optimization of model parameter estimation procedures, identification and taking 
into consideration of possible uncertainties met in the process of data processing and mathematical 
model development. The uncertainties are inherent to data collecting, model constructing and forecasting 
procedures and play a role of negative influence factors to the information system computational 
procedures. Reduction of their influence is favorable for enhancing the quality of intermediate and final 
results of computations. The illustrative examples of practical application of the system developed 
proving the system functionality are provided. 

Index Terms—Adaptive modeling; probabilistic and statistical models; short-term forecasting; 
uncertainties in modeling; system analysis principles. 

I. INTRODUCTION 

Modeling and forecasting financial, economic, 
ecological, climatology and many processes in other 
spheres of human activity is important problem that 
is to be solved by many companies and institutions 
in business, at the state and industrial enterprises, 
scientific and educational laboratories etc. The most 
distinctive common features of such processes today 
are nonstationarity and nonlinearity that require a lot 
of special attention for estimating respective model 
structure and its parameters. To improve the 
forecasts based upon mathematical models it is 
necessary to develop new appropriate model 
structures that would adequately describe the 
processes under study and provide a possibility for 
computing high quality forecasts. One of the most 
promising modern approaches to modeling and 
forecasting is based upon so called systemic 
approach that supposes application of system 
analysis principles in the frames of specialized 
decision support system (DSS) [1] – [3]. Usually the 
set of the principles includes the following ones: 

 constructing DSS according to the 
hierarchical strategy of decision making; 

 application of optimization and adaptation 
techniques for model building, forecasting and control; 

 identification of possible uncertainties (the 
factors of negative influence to the computational 

procedures used in DSS that are of various kind and 
origin) and application of algorithmic means helping 
to reduce their influence on the quality of 
intermediate and final results of data processing and 
decision making [4].  

Some other systemic principles could be hired for 
constructing DSS, though perhaps not so important 
as those mentioned above. The most important for 
practical use are the principles of adaptation, 
optimization and minimization of uncertainty 
influence that are helpful for enhancing adequacy of 
the models being constructed and improving the 
quality of intermediate and final results.  

There are many positive examples of adaptation 
and optimization techniques application in 
modeling, forecasting and control [5] – [7]. This is 
especially urgent task for analyzing non-stationary 
processes met practically in all the areas mentioned 
above. There are two basic directions of adaptation 
while solving the modeling problems: adaptation of 
model structure and parameters. According to our 
definition the notion of model structure includes the 
following elements: 

 model dimension that is determined by the 
number of its equations; 

 model order that is determined by the highest 
order of a model equation; 

 output reaction delay time (or lag) for 
independent variables (regressors); 
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 system or process nonlinearity and its type 
(nonlinearity with respect to variables or to 
parameters); 

 type of external stochastic disturbance 
(distribution and its parameters); 

 system (process) initial conditions and possible 
restrictions on variables and/or model parameters [8]. 

Thus, we have many possibilities for model 
structure corrections and its adaptation to varying 
system operation modes and conditions of application.  

The books [6] – [8] consider various possibilities 
for mathematical models adaptation and their further 
applications to short-term forecasting dynamics of 
specific processes under consideration. The set of 
possible model structures proposed is very wide, 
starting from linear regression equations and up to 
sophisticated probabilistic models in the form of 
Bayesian networks, various nonlinear structures and 
combined models. There also can be found some 
adaptation procedures illustrating possible changes 
of a model structure and re-computing of their 
parameters. It is stressed that application of 
adaptation schemes helps to increase model 
adequacy in changing conditions of random external 
influences, nonlinearity and nonstationarity of the 
process under study.  

The study [9] describes procedures for 
constructing adaptive regression models on the basis 
of large datasets. The authors proposed development 
of decision rules in application to machine learning. 
They stress that model trees and regression rules are 
most expressive approaches for data mining 
procedures of model development. The adaptive 
model rules proposed in the study create a one-pass 
algorithm that can adapt available set of rules to the 
possible changes in the processes under 
consideration. The sets of rules generated can be 
ordered or unordered, and it was shown 
experimentally that unordered rules exhibited higher 
performance in the terms of statistical quality 
parameters of the models generated.  

The results presented in [10] – [11] consider the 
problem of adaptive models constructing for 
nonstationary heteroscedastic processes widely 
known today in analysis of financial time series. The 
authors proposed a procedure for automated 
constructing and model selection in finance. The 
flexible procedure is general-to-specific modeling of 
the mean, variance and probabilistic distribution. 
The initial specification of a model starts from 
autoregressive terms and regressors (explanatory 
variables). The variance specification is based upon 
log-ARCH and log-GARCH terms, the term of 
asymmetry, Bernoulli jumps and other possible 
explanatory variables. The algorithm developed 
returns specifications of parsimonious mean and 
variance as well as standardized error distribution in 

cases when normality is rejected. The extensive 
Monte Carlo simulations were performed and three 
empirical applications studied that support 
usefulness of the method proposed for practical 
analysis of financial data.  

The use of adaptive exponential smoothing for 
lumpy demand forecasting is considered in [12]. It 
showed substantial advantages over some 
conventional approaches used in practice due to 
appropriate selecting the model smoothing factor. 
Kalman filter is used to perform preliminary 
measurement data processing, and then forecasting 
models are constructed using adaptive smoothing 
factor based upon optimal filter weighting function. 
As a result the model performance with this 
weighting function managed to generate smaller 
forecasting errors than their counterparts used in 
demand prediction.  

Adaptive forecasting of dynamic processes in 
conditions when recent and ongoing structural 
changes are present is considered in [13], and the 
nature of the changes is unknown. The authors used 
the method of down-weighting older data based on 
the tuning parameter found as a result of minimizing 
mean square error of time series forecasts. A 
detailed theoretical analysis of the forecasting 
method is presented as well as positive results of 
multiple computational experiments based upon 
macroeconomic data from US economy.  

The problem of short-term forecasting in 
conditions of availability of structural breaks is 
considered in [14]. The optimal one step ahead 
forecasts are generated using known exponential 
smoothing techniques. Analytical expressions are 
derived for optimal weights in models with one and 
multiple regressors. The authors showed that the 
weight remains the same within a given operating 
regime of a system under study. The comparative 
study of the method proposed was performed using 
Monte Carlo simulations and the data from industrial 
economies. It was shown that robust optimal weights 
provide high quality short-term forecasts when 
information on structural breaks is uncertain.  

A short review of adaptive approaches to 
modeling and forecasting processes in various areas 
of human activities presented above indicates that 
appropriate adaptation of the models constructed 
usually helps to construct adequate models and to 
enhance forecast quality. The study proposed is 
directed towards development of adaptive 
forecasting system providing a possibility for 
forecasting nonlinear nonstationary processes 
(NNPs) met in economy, finances, ecology etc.  

II. PROBLEM STATEMENT 

The purpose of the study is in solving the 
following problems: to develop structure and 
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parameter adaptation procedures for the regression 
and probabilistic models; to develop the system 
architecture for modeling and forecasting nonlinear 
nonstationary processes in economy, finances, 
ecology and other areas based on the system analysis 
principles; to consider possibilities for elimination of 
some uncertainties inherent in data collecting, model 
constructing and forecasting procedures; to develop 
the methodology for modeling and forecasting linear 
and nonlinear processes in the frames of the same 
system; providing illustrative examples of practical 
application of the system developed proving the 
system functionality. 

III. SOME COMMON FEATURES OF THE PROCESSES 
IN ECONOMY, FINANCES AND ECOLOGY 

A wide diversity of various processes exists in 
economy, finances, ecology, demography and other 
areas of human activity. However, there are some 
general common features of the process like linearity / 
nonlinearity, and stationarity / nonstationarity that 
allow to divide them into practically understandable 
classes and select appropriate modeling and 
forecasting techniques. Figure 1 shows simplified 
classification of the processes from which we could 
make a conclusion about wide variety of mathematical 
model structures that could be applied for formal 
description of the processes dynamics and solving the 
problem of forecasting their evolution in time.  

 
Fig. 1. A simplified classification of dynamic processes in 

economy and finances 

Linear processes can be stationary without trend 
and nonstationary when they contain linear (first 
order) trend, I(1), where I(1) means integrated of the 
first order. If variance (covariance) of stochastic 
linear process is time dependent then it is classified 
as heteroscedastic and requires nonlinear models for 
describing the process variance and possibly the 
process itself.  

There also exists a wide variety of nonlinear 
processes though we selected only some of them that 
are more frequent in economy and finances. 
Generally the processes can be split into nonlinear 

regarding parameters and nonlinear regarding 
variables. The first type is more sophisticated with 
respect to modeling and parameter estimation and 
usually requires more efforts and time for their 
model development; it is not considered here. As an 
example of such a model could be mentioned widely 
used in practice logistic regression.  

Some nonlinear processes can exhibit linear 
behavior in their stable (nominal) mode of operation. 
This feature allows for linear description of the 
process in the vicinity of operating point. Generally 
NNPs are very often met in the areas of study 
mentioned above. The set of the processes includes 
integrated processes (IP) that contain a trend of 
order two or higher as well as cointegrated processes 
with the trends of the same order, and the processes 
with time changing variance, i.e. heteroscedastic 
processes. Most of financial processes illustrating 
price evolution of stock instruments belong to this 
class [15], [16]. In engineering applications such 
processes are studied in diagnostic systems where 
appropriate decision is made regarding current 
system state.  

IV. METHODOLOGY OF MODELING NONLINEAR 
NONSTATIONARY PROCESSES 

The methodology proposed for modeling NNPs 
illustrates Fig. 2. At the first step of the methodology 
the data collected is subjected to preliminary 
processing that may include the following basic 
operations: imputation of missing observations, 
normalization in a given range, digital or optimal 
filtering dependently on problem statement, 
principal component analysis, appropriate 
processing of outliers etc. Here it is also appropriate 
to perform identification and elimination (reduction) 
of data uncertainties that may touch the following: 
non-measurable value estimation; computing the 
general statistical parameters (variance, covariance, 
mean, median etc.); performing data structuring 
according to the problem statement; analysis of 
distribution types and their parameters; estimation of 
prior probabilities where necessary [17], [18].  

Estimation of a model structure using statistical 
and probabilistic (mutual) information analysis that 
provides a possibility for estimation of the following 
elements of a model structure: dimension of a model 
– number of equations creating the model; model 
order (highest order of difference or differential 
equation of the model); nonlinearity and its type; 
estimate of input delay time, and type of 
probabilistic distribution for the model variables. It 
is always appropriate to perform structure estimation 
for several candidate-models so that to have a 
possibility for selecting the best one of the 
candidates estimated. 

Some types of nonlinear models are given in 
Table I.  
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Fig. 2. Functional layout of the forecasting system proposed 

The models (no. 1–8) presented in Table 1 have 
known structure though it can be modified in the 
process of adaptation using specific statistical data. 
Model 1 was successfully applied for trend modeling 
of various orders together with short-term deviations 
from conditional mean. Models 2, 4 can describe 
bilinear and exponential nonlinearities or 
nonlinearity with saturation (model 3). Models 5, 6 
are used for description of conditional variance 
dynamics while modeling heteroscedastic process. 
The last one turned out to be the best model for short 
term forecasting of variance in about 90% of 
applications performed by the authors. Models 7–9 
can describe arbitrary nonlinearities with respect to 

variables of order 3–5 or higher. Fuzzy sets based 
approach to modeling supposes generating of a set 
of rules that could describe with acceptable quality 
functioning of selected processes and formulate 
appropriate logical inference. Neural networks and 
fuzzy neural networks are suitable for modeling 
sophisticated nonlinear functions in conditions of 
availability of some unobservable variables. 
Dynamic Bayesian networks and multivariate 
distributions are statistical/probabilistic models that 
could describe complex multivariate processes 
(systems) with generating final result of their 
application in the form of conditional probabilities 
(probabilistic inference). 
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TABLE I. SOME LINEAR AND NONLINEAR MODELS FOR DESCRIBING PROCESS DYNAMICS 

no. Model Description Formal Model Structure 
1 AR + polynomial of time  

0 11
( ) ( ) ... ( )p m

i mi
y k a a y k i b k b k k


       ,  

0,1, 2, ...k   is discrete time; st k T ; sT  is sampling time.  

2 Generalized bilinear model    s
j ij

m
i kjkvikycaky 110 )()()()(

 3 Logistic regression  1( ( , ))
1 exp ( ( , ))

x k z
x k z

 
 

, 0 1 1( ) ( ) ... ( ) ( )m mx k z k z k k          

4 Nonlinear extended 
econometric autoregression 

1 0 1 1 12 2 2 1 2 1( ) ( 1) exp( ( )) ( )y k a a y k b y k a x x k       ,  

2 0 1 2 21 1 2 1 2 2( ) ( 1) exp( ( )) ( )y k c c y k b y k c x x k       

5 Generalized autoregression 
with conditional 
heteroscedasticity 
(GARCH)  

2
0

1 1
( ) ( ) ( )

q p

i i
i i

h k k i h k i
 

          . 

6 Exponential generalized 
autoregression with 
conditional heteroscedas-
ticity (EGARCH)  

0
1 1 1

( ) ( )log[ ( )] log[ ( )] ( )
( ) ( )

            

p p q
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i i i
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7 Nonparametric model with 
functional coefficients     1

( ) ( ) exp ( ) ( )p m
i i i ii
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8 Radial basis function  2
T

2
1

( ( ) )( ( )) exp ( ) , [ , , ] ; 2,3,...
2

M
i

i i i i
i i

x kf x k k M


 
           

 
  

9 State-space representation ( ) [ ( ), ( 1)] [ ( ), ( )] ( )k k k k k d k    x F a x B b u w  
10 Neural networks  Selected (constructed) network structure  
11 Fuzzy sets and neuro-fuzzy 

models  
Combination of fuzzy variables and neural network model  

12 Dynamic Bayesian networks  Probabilistic Bayesian network structure constructed with data and/or expert 
estimates  

13 Multivariate distributions  Say, copula application for describing multivariate distribution  
14 Immune systems  Immune algorithms and combined models  

 
Formally, to detect nonlinearity in statistical data 

available statistical tests and techniques should be 
applied. Fig. 3 shows some known techniques for 
testing the data for nonlinearity. 

Along with application known technics we 
proposed a new simplified empirical criterion for 
detecting nonlinearity in data that is shown below in 
the Fig. 3: here R is maximum deviation of the 
process under study from its linear approximation; 
  is sample standard deviation of the process. It 
does not require sophisticated computations though 
provides for additional information about 
availability of nonlinearity.  

The sequence of operations allowing for 
constructing nonlinear model illustrates Fig. 4; 
actually this is a part of general model constructing 
procedure given in Fig. 2. 

Consider the possibility for describing 
nonlinearities with respect to model variables. The 
nonlinearities could be identified in the following 

way: the linear part of a model is estimated first using 
linear structures like autoregressive equations with 
moving average (ARMA (p, q)) possibly with linear 
trend, multiple regression etc. Then nonlinear part is 
added to the linear using the following possibilities: 
description of nonlinear trend, bilinear or higher order 
terms. Sometimes nonlinear terms describing cyclic 
changes of the main variable are added etc. The 
practice of model constructing shows that model 
adequacy can be reached using the combination of 
linear and nonlinear regression, linear regression and 
Bayesian networks, linear regression and nonlinear 
functions in the form of nonparametric kernels. 
According to this approach several candidate models 
could be constructed with subsequent choice of the 
best one on the basis of appropriate set of statistical 
adequacy criteria as shown in Fig. 2. It is clear that 
formal possibilities for determining the type of 
nonlinearity in a unique way not always exist, for 
example, when the data samples are short.
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Fig. 3. Some techniques for testing data for nonlinearity

 
Fig. 4. Procedure illustrating the search for formal 

description of nonlinear process 

The next step is model parameter estimation by 
making use of alternative techniques; in linear case 
these are the following ones: ordinary least squares 
(OLS) and its clones, maximum likelihood (ML) and 
many others. In a case of nonlinear model estimation 
the following methods are useful: ML, Markov 
Chain Monte Carlo (MCMC) procedures [19], 
nonlinear least squares (NLS) and other suitable 

approaches able to provide unbiased parameter 
estimates under specific probabilistic distributions of 
model variables and model structures. Correct 
application of alternative parameter estimation 
techniques provides a possibility for further 
comparison of the candidate models and selection of 
the best one. It is also possible to trace the reasons 
for existing parametric uncertainties in the following 
form: parameter estimates computed with statistical 
data cannot be consistent, they may contain bias, and 
can be inefficient. All these effects finally result in 
poor adequacy of the model constructed.  

At the next stage is computed a set of statistical 
parameters characterizing model quality (adequacy) 
and selecting the most suitable model out of the set of 
candidate models. There is no need to leave only one 
model for computing forecasts (or solving control 
problem). Again, it can be a set of the “best” models 
constructed on different ideologies. The final choice is 
always made after models application for solving the 
problem according to the initial problem statement.  

After computing the process (under study) 
forecasts using candidate models another set of 
forecast quality criteria is applied to select the best 
result, say mean absolute percentage error (MAPE), 
Theil coefficient, mean absolute error (MAE), 
minimum and maximum errors of forecasting etc. The 
models constructed should also be tested on similar 
process, i.e. model calibration process performed.  

At this point we can conclude that availability of 
the data uncertainties mentioned, and the necessity for 
hierarchical construction of the data processing system 
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with the features of adaptation and optimization 
(structural and parametric) require application of the 
modern systemic approach that provides a possibility 
for successful and high quality solving the problems 
encountered during statistical data processing, 
mathematical model construction, forecast estimation 
and generating the decision alternatives. In this study 
we propose some practical possibilities for 
constructing data processing procedures based on 
modern principles of systemic approach. 

V. DEALING WITH UNCERTAINTIES 
An important point to be considered in the 

procedures of model constructing, forecast 
estimation and decision making is the problem of 
dealing with uncertainties. We consider uncertainties 
as the factors of negative influence on the whole 
procedure of data processing and model constructing 
that may result in unsatisfactory intermediate and 
final results of computational experiments. The 
factors inevitably appear when the statistical data is 
used for model constructing.  

The sources for possible uncertainties in the 
process of model constructing and forecast 
estimation are as follows:  

 some data is not available or lost due to 
various reasons what requires application of 
appropriate data imputation procedures;  

 the data is generated by the system under study 
which is influenced by the random external 
disturbances that distort actual values of system state;  

 the observations are always measured 
(collected) with some errors the influence of which 
should be minimized before further use of the 
measurements;  

 the parameters defining model structure are 
also assigned random values what results in 
approximate model structure;  

 very often there exists a difficulty of selecting 
a method for model parameter estimation, especially 
in cases of dealing with short samples, or samples 
with outliers, or when data probability distribution is 
poorly defined; as a result the parameter estimates 
can be biased or non-effective;  

 the multistep forecasting requires the use of 
intermediate estimates what may lead to substantial 
deterioration of the forecast estimates.  

Thus, the model constructing procedures that are 
usually implemented in the frames of appropriately 
designed decision support systems should contain 
the means for uncertainty identification and 
minimization of their negative influence. Table II 
summarizes types of possible uncertainties and 
reflects some possible means for dealing with them. 

TABLE II. POSSIBLE TYPES OF UNCERTAINTIES IN MODELING AND FORECASTING 

no Uncertainty Type Reason for Uncertainty Methods of Minimizing 
Uncertainty influence 

1 Uncertainty of a model 
structure 

 impossibility for establishing 
all possible causal relations 
between variables;  

 approximate values for model 
structure parameters;  

 expert approach;  
 application of statistical tests;  
 application of hypo-thesis testing 

theory 

2 Statistical uncertainty 
 measurement errors;  
 stochastic disturbances;  
 outliers;  
 missing data values;  

 digital and optimal filters;  
 refining the type of distribution;  
 extremum value theory;  
 imputation of missing values;  

3 Parametric uncertainty  
 incorrect choice of parameter 

estimation method;  
 short samples;  

 application of alternative 
parameter estimation techniques;  

 expansion of data samples;  

4 Probabilistic uncertainty  
 complex mechanisms of 

causal relations between 
variables;  

 Bayesian networks;  
 Markov models;  
 probabilistic filters;  
 conditional distributions;  

5 Amplitude uncertainty  
 non-measurable variables;  
 high measurement errors;  

 Bayesian data processing;  
 fuzzy logic.  

 

A. Dealing with model structure uncertainties 
When using DSS, model structure should 

practically always be estimated using data. It means 
that elements of the model structure accept almost 
always only approximate values. When a model is 

constructed for forecasting we build several 
candidates and select the best one of them using a 
set of model quality (adequacy) statistics. Generally 
we could define the following techniques to fight 
structural uncertainties: gradual refinement of model 
order (for AR(p) or ARMA(p, q) structures) 
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applying adaptive approach to modeling and 
automatic search for the “best” structure using 
complex statistical quality criteria; adaptive 
estimation of input delay time (lag) and the type of 
data distribution with its parameters; formal 
description of detected process nonlinearities using 
alternative analytical forms with subsequent 
estimation of model adequacy and forecast quality. 
A simple example of the complex model and 
forecast criterion may look as follows:  

 2
ˆ

1 2 ln MAPE min
i

J R DW


       , 

or in more complicated form:  

 

2 2

1

ˆ

1 ln ( ) 2

                                         ln MAPE min,
i

N

k
J R e k DW

U




 
     

 
   


 

where 2R  is determination coefficient; 

 22

1 1

ˆ( ) ( ) ( )
N N

k k
e k y k y k

 

    is a sum of squared 

model errors; DW  is Durbin–Watson statistic; 
MAPE  is mean absolute percentage error for one 
step-ahead forecasts; U  is Theil coefficient that 
characterizes forecasting capability of a model; ,   
are appropriately selected weighting coefficients; ˆ

i  
is parameter vector for ith candidate model. A 
combined criterion of this type is used for automatic 
selection of the best candidate model constructed. 
The criteria presented also allow operation of DSS 
in adaptive mode. Obviously, other forms of the 
combined criteria are possible dependently on 
specific purpose of model building. What is 
important while constructing the criterion: not to 
overweigh separate members in right hand side that 
would suppress other components.  

B. Coping with uncertainties of a level (amplitude) 
type 

The availability of random and/or non-measurable 
variables results in the necessity of hiring fuzzy sets 
for describing processes in such situations. The 
variable with random amplitude can be described 
with some probability distribution if the 
measurements are available or when they come for 
analysis in acceptable time span. However, some 
variables cannot be measured in principle, say amount 
of shadow capital that “disappears” every month in 
offshore zones, or amount of shadow salaries paid at 
some company, or a technology parameter that cannot 
be measures on-line due to absence of appropriate 
gauge or in-situ physical difficulties. In such 
situations it is possible to assign to the variable a set 

of characteristic values in linguistic form, say as 
follows: capital amount = { very low, low, medium, 
high, very high }. There exists a complete set of 
necessary mathematical operations to be applied to 
such fuzzy variables. Finally fuzzy value can be 
transformed into exact non-fuzzy form using known 
transformation techniques.  

C. Probabilistic uncertainties and their description  
The use of random variables leads to the 

necessity of estimating actual probability 
distributions and their application in inference 
computing procedures. Usually observed value is 
known only approximately though we know the 
limits for the actual values. Appropriate probability 
distributions are very useful for describing the 
processes under study in such situations. When 
dealing with discrete outcomes, we assign 
probabilities to specific outcomes using a mass 
function. It shows how much “weight” (or mass) to 
assign to each observation or measurement. An 
answer to the question about the value of a particular 
outcome will be its mass. The Kolmogorov’s axioms 
of probability are helpful for deeper understanding 
of what is going on. If two or more variables are 
analyzed simultaneously it is necessary to construct 
and use joint distributions. Joint distributions allow 
estimation of conditional probabilities using 
renormalization procedures when necessary.  

Very helpful for performing probabilistic 
computations is a notion of conditional 
independence: ( , | ) ( | ) ( | )P x y z P x z P y z , where x  
and y  are independent events. Such identities are 
very handy though one should be careful when using 
them, i.e. the events should be actually independent. 
The remarkable intuitive meaning of discrete Bayes’ 
law, ( / ) ( / ) ( ) / ( )P A B P B A P A P B , is that it allows 
to ask the reverse questions: “Given that event A  
happened, what is the probability that a particular 
event B  evoked it?” The marginal probability, ( )P B
, can be computed using appropriate conditionals. 
The probability that event B  will occur in general, 

( )P B , could be obtained from the following 
condition: ( ) ( / ) ( )P B P B A P A   ( / ) ( )P B A P A .  

The probabilistic types of uncertainties regarding 
whether or not some event will happen can be taken 
into consideration with probabilistic models. To solve 
the problem of describing and taking into account 
such uncertainties a variety of Bayesian models could 
be hired that are considered as Bayesian 
Programming formalism. The set of the models 
includes Bayesian networks (BN), dynamic Bayesian 
networks (DBN), Bayesian filters, particle filters, 
hidden Markov models, Kalman filters, Bayesian 
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maps etc. The structure of Bayesian program includes 
the following elements: (1) problem description and 
statement formulation with a basic question of the 
form: (Searched/ Known)P  or ( / , )iP X D Kn , where 

iX  defines one variable only, i.e. what should be 
estimated using specific inference engine; (2) the use 
of prior knowledge Kn  and experimental data D  to 
perform model structure and parameters 
identification; (3) selection and application of 
pertinent inference technique to answer the question 
stated before; (4) testing quality of the final result. 
Such approach also works well in adaptation mode 
aiming to adjusting structure and parameters of a 
model being developed to new experimental data or a 
new system operation mode, for example, for 
estimation of prior distributions or BN structure. 

VI. SOME SYSTEM ANALYSIS PRINCIPLES USED IN 
DSS IMPLEMENTATION 

In our study we propose to use the following 
system analysis principles for implementing 
specialized DSS for modeling and forecasting: the 
systemic function coordination principle; the 
principle of procedural completeness; the functional 
orthogonality principle; the principle of dependence 
of mutual information between the functions being 
implemented; the principle of functional rationality; 
the principle of multipurpose generalization; the 
principle of multifactor adaptation, and the principle 
of rational supplement [20] – [22].  

The principle of systemic functions coordination 
supposes that all the techniques, approaches, and 
algorithms (functions) implemented in the system 
should be structurally and functionally coordinated, 
and should be mutually dependent. This way it is 
possible to create and practically implement a unique 
systemic methodology for statistical data analysis in 
the frames of modern DSS, and to improve 
substantially quality of intermediate and final results. 
The next systemic principle of procedural 
completeness guaranties that the system developed 
will provide the possibility for timely and in place 
execution of all necessary computing functions 
directed towards data collection (editing, normalizing,  
filtering and renewing), formalization of a problem 
statement, model constructing, computing forecasts, 
and for performing estimation quality of the model 
and the forecast estimates based upon it.  

Development and implementation of all 
computational procedures in the DSS using mutually 
independent functions corresponds to the principle 
of functional orthogonality. Such approach to the 
DSS constructing is directed towards substantial 
enhancement of computational stability of the 

system and simplification of its further possible 
modifications and functional enhancement. 
According to the principle of mutual informational 
dependence the results of computing, generated by 
each procedure, should correspond to the formats 
and requirements of other procedures. This feature is 
easily implemented with respective project 
development solutions for the system created.  

Application of the systemic principle of goal 
directed correspondence to computational procedures 
and functions provides a good possibility for reaching 
of a unique goal set in advance: high (acceptable) 
quality of the final result in the form of forecast 
estimates for the process under study as well as 
alternative decisions based upon the forecasts.  

According to the systemic principle of 
multipurpose generalization all functional modules 
for the system developed should possess necessary 
degree of generalization that provides a possibility 
for reaching high quality solution results for a set of 
possible problems that belong to the same class (it 
can be high quality forecasting and decision 
alternative generation regarding future evolution of 
linear or nonlinear non-stationary processes). 
Among these problems could be the following: 
accumulating necessary data and their preliminary 
processing; estimation of structure and parameters 
for a set of candidate mathematical models; 
constructing forecasting functions on the models 
developed and computing of appropriate forecasts; 
selecting the best results of computing using 
appropriate sets of quality criteria.  

The systemic principle for multifactor adaptation 
is directed towards the possibility of solving the 
problems of computational procedures adaptation to 
the problems of modeling various processes of 
different complexity depending on the completeness 
of available information and user requirements. The 
adaptation is performed within the process of model 
structure and parameters estimation, i.e. the whole 
identification procedure of a process under study is 
compiled from a set of adaptive procedures directed 
towards reaching the main goal of a study: 
constructing adequate model and computing high 
quality forecasts.  

The new procedures could be directed towards 
implementation of additional preliminary data 
processing procedures, model structure and 
parameter estimation as well as selection of the best 
result for its further use. Implementation in the 
frames of the constructed DSS of the systemic 
principles mentioned above favors its functional 
flexibility, computational reliability, quality 
enhancement for the intermediate and final results.  



P.I. Bidyuk, V.M. Sineglazov  Adaptive Modeling and Forecasting of Nonlinear Nonstationary Processes               25 
 

 

Finally, the forecasting models and methods used 
in the system are the following: regression analysis, 
the group method for data handling (GMDH), fuzzy 
GMDH, fuzzy logic, appropriate versions of the 
optimal Kalman filter (KF), neural nets, support 
vector regression, nearest neighbor and probabilistic 
type techniques like Bayesian networks and 
regression. The set of modeling techniques used 
covers linear and many types of nonlinear non-
stationary processes. The nearest neighbor technique 
is hired for generating long term forecasts in a case 
of availability long data samples with periodical 
patterns. All the techniques are implemented in 
adaptive versions what makes the system more 
flexible for newly coming data and capable to fight 
some types of possible uncertainties mentioned 
above. During the process of model structure 
estimation an appropriate principal component 
analysis technique is applied when necessary.  

VII. BAYESIAN NETWORK ADAPTATION 

Bayesian networks (BN) create one of the 
powerful modern probabilistic instruments for 
solving the problems of mathematical modeling, 
forecasting, classification, control and decision 
support [23], [24]. To estimate BN model structure 
the algorithms are used on the basis of statistical 
data that characterize evolution of the network 
variables. It is possible to develop and use the 
algorithms that allow for adaptation of the network 
structure to the new data coming in real time. This is 
a choice used in the DSS with adaptation features.  

The adaptation procedure could be explained 
using the following notation:  1,..., nZ X X  is a 
set of BN model nodes that is determined by the 
number of variables hired to construct appropriate 
directed graph;  ( , )| ,i j i jE X X X X Z   is a set of 

BN arcs; iX  is a BN node that corresponds to the 
observations of one variable; n Z   is a total 
number of BN nodes; ir  is a number of values that 
could be accepted by the node iX ; ikv  is the kth 
value of variable iX ; i  is the set of parent nodes 
for the variable iX ; i  is the set of possible 
initializations i  for the node iX ; i iq    is the 
number of possible initializations i ; ij  is jth 
initialization for the set of parent nodes i  for iX ; 

SB  is structure of BN; PB  is probabilistic 
specification of BN, i.e. the part of BN description 
that represents its probabilistic characteristics, 

( | , )ijk i ik ij Pp X v B     under condition that the 

sum of the probabilities 1ijk
k
  ;  1( ,..., )

iij ijrf    is 

the probability density for the node iX  and 
initialization ij ; 0D  is database; 0S  is preliminary 
estimate of BN structure computed on the basis of 
available data 0D ; 1D  is database of observations 
that were not used for estimating preliminary 
structure 0S ;  1S  is BN structure found after 0S  
adaptation to the new data 1D . The problem is to 
construct algorithm for adaptation of initial Bayesian 
network ,G Z E  having the structure, 0S , to the 
new observations 1D .  

This way a new (or modified) model structure 
will be formed: 1 1S D . The statistical data used 
could exhibit arbitrary probability distribution, and 
the processes described by the data could be of 
nonlinear non-stationary nature i.e. their 
mathematical expectation [ ] constiE X   and 
variance, 2{ [ ]} consti iE X E X  .  

Adaptation of the BN to new data is implemented 
in the following way:  

 implementation of the procedure for refining 
the model structure: here the model arcs can be 
eliminated or added;  

 correcting the probabilistic part of the model 
(conditional probability tables or CPTs).  

At the initial stage of learning BN the probabilistic 
part of the model is represented in the form of CPTs 
that are computed on the basis of the frequency 
analysis of available statistical data. Consider the 
procedure of correcting this probabilistic part of the 
model. For this purpose it is more convenient to save 
(and use) the values of ijkN  instead of the CPTs 
themselves, where ijkN  is a number of values 
corresponding to the, ijk . This way it is possible to 
perform renewing the data faster regarding 
conditional distributions and the values themselves 
could be computed using the Dirichlet expression:  

1
( | ) .ijk

i ik i ij
ij i

N
p X v

N r


    


 

When correcting BN structure the order of the 
nodes analysis will be determined by the value that 
each node provides for the following conditional 
probability [25]:  
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An informational importance of the model arcs is 
performed as follows. To determine the necessity of 
deleting a node the following value is computed: 

delete 0( )K S  for the current configuration of the parent 
nodes set. Also the value of delete 1( )mK S  is computed 
for the directed graph configurations that represent 
the result of deleting one of M (1 m M  ) input arcs 
for the current node. Under condition 

delete 1 delete 0( ) ( )mK S K S   the mth arc continues to 
belong to the model structure because its elimination 
results in decreasing of the local quality functional 
(i.e. for the current node). Otherwise the arc is 
registered in the list of arcs that should be tested 
further on for elimination. The further testing is 
based upon computing the value of the local 
functional for initially set configuration (structure) 
and for the configurations that result from 
eliminating of one of the arcs that are left in the list.  

As far as BN model constructing strategy is 
based upon the general functional  

0 1 0
1 1 0 0

1 0 0

( | ) ( | , )
( | , , ) arg max ,

( | , )S

P S D P D S D
P S D D S

P D S D
  

the arcs elimination and adding procedure is of 
optimization type and is performed in the following 
way. The arc elimination should result in decreasing 
the value of the first member in the nominator, 

0( | )P S D , because it reaches maximum with 0S S  
when initial structure 0S  is formed. Generally, to get 
a positive effect of adaptation it is necessary to 
compensate the loss due to arc elimination by the 
effect of adding new arc. That is why the search for 
the arc to be added to the graph is performed as 

mentioned above. Estimation of effect due to adding 
the arc is also based on the local quality functional, 
its value should increase.  

VIII. EXAMPLES OF THE DSS APPLICATION 

Example 1. Numerous examples of model 
constructing and forecasting have been solved with 
the DSS developed. In this example bank client’s 
solvency is analyzed, i.e. application scoring is 
estimated. The database used consisted of 4700 
records that were divided into learning sample (4300 
records), and test sample (400 records). The default 
probabilities were computed and compared to actual 
data, and also errors of the first and second type 
were computed using various levels of cut-off value. 
It was established that maximum model accuracy 
reached for Bayesian network was 0.787 with the 
cut-off value 0.3. The Bayesian network is “inclined 
to over insurance”, i.e. it rejects more often the 
clients who could return the credit. The model 
accuracy and the errors of type I and type II depend 
on the cut-off level selected. The cut-off value 
determines the lowest probability limit for client’s 
solvency, i.e. below this limit a client is considered 
as such that will not return the credit. Or the cut-off 
value determines the lowest probability limit for 
client’s default, i.e. below this limit a client is 
considered as such that will return the credit. As far 
as the cut-off value of 0.1 or 0.2 is considered as not 
important, in practice it is reasonable to set the cut-
off value at the level of about 0.25 – 0.30. Statistical 
characteristics characterizing quality of the models 
constructed are given in Table III. 

TABLE III. ADEQUACY OF THE MODELS CONSTRUCTED 

Model type Gini index AUC Common accuracy Model quality  
Bayesian network 0.719 0.864 0.787 (0.806) Very high  
Logistic regression  0.685 0.858 0.813 (0.828) Very high  
Decision tree  0.597 0.798 0.775  Acceptable 
Linear regression   0.396 0.657 0.631 (0.639)  Unacceptable  

 
Thus, the best models for estimation of 

probability for credit return are logistic regression 
and Bayesian network. The best common accuracy 
showed logistic regression, 0.813, though Bayesian 
network exhibited higher Gini index, 0.719 (the 
values in parenthesis show improvement due to 
application o adaptive mode of modeling). The 
decision tree hired is characterized by Gini index of 
about 0.597, and CA = 0.775. It should be stressed 
that acceptable values of Gini index for developing 
countries like Ukraine are located usually in the 
range between 0.4 – 0.6. The Bayesian network 
constructed and nonlinear regression showed high 

values of Gini index that are acceptable for the 
Ukrainian economy in transition.  

Example 2. In this case the following four types 
of scoring were studied: 

 application scoring that is based on the data 
given by clients during the process of analyzing the 
possibility for providing them with a loan;  

 behavioral scoring or scoring analysis within 
the period of loan usage; this study was directed to 
monitoring of a loan keeper account state, in this 
case we estimated the probability of timely return of 
the loan by clients, optimal loan limit for the loans 
etc.;  
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 strategic scoring that is directed towards 
determining the strategy regarding nonreliable loan 
keepers violating the rules established;  

 fraud scoring the purpose of which is to 
determine the probability of potential fraud on 

behalf of clients.  
The database used in this case consisted of 96000 

records with 30 tokens for each client. Some results 
of experiments are presented in Table IV. 

TABLE IV.  RESULTS OF COMPUTATIONAL EXPERIMENTS FOR APPLICATION AND BEHAVIOR SCORING 

Model used Application scoring Behavior scoring 

Mean AUC Common 
accuracy 

Learning 
time 

Mean AUC Common 
accuracy 

Learning 
time 

Logistic 
regression  

0.917 0.873 3.47 0.905 0.854 (0.876) 2.66 

Bayesian 
network  

0.922 0.862 2.98 0.913 0.851 (0.864) 2.86 

Gradient 
boosting  

0.974 0.925 148.64 0.971 0.911 (0.929) 150.78 

 
The table contains common accuracy values for the 

experiments without adaptation and with adaptation in 
parenthesis. For the purpose of simulating adaptation 
mode the data were divided into parts of equal size 
(3000 records in each part) and then after model 
constructing and usage the new data portion was fed 
into the model constructing algorithm.  

To analyze strategic scoring the subset of data 
was used that characterizes annual income of active 
clients and their total expenditures. The purpose of 
the study is to divide clients into clusters and to 
apply a unique management strategy to each cluster 
using K-means technique. The basic parameter for 
such clustering technique is a number of clusters K. 
The parameter is estimated using minimizing sum of 
squares criterion within a cluster (WCSS). It was 
established that six clusters provide for an 
acceptable clustering of the clients:  

 K1: an average income and low expenses;  
 K2: low income and low expenses;  
 K3: high income and high expenses;  
 K4: low income and high expenses;  
 K5: an average income and high expenses;  
 K6: very high income and high expenses.  
The fraud analysis was performed with the highly 

unbalanced data: 187 operations out of the total 
number of operations 86754 were classified as the 
fraud. The positive class of the data (fraud) included 
0.215% of all the operations performed. The 
Bayesian network constructed on the data showed 
AUC = 0.863. After the data was corrected with 
expanding the smaller class of data (oversampling 
approach) the result of classification was improved 
to the following: AUC = 0.896. Finally a combined 
approach was applied to solving the problem that 
supposes application of oversampling, elimination of 
“noise” from the observations, and gradual 
improvement of balance between the classes to 

about 40:60 and 50:50. The result of classification 
was improved to the AUC = 0.928, and in adaptation 
mode to the value of about AUC = 0.935.   

Example 3. As an example of the methodology 
application a time series was studied, the values of 
which were gold prices within the period between 
the years 2005–2006 (sample contains 504 values). 
The statistical characteristics showing constructed 
models and forecasts quality are given in Table V. 
Here the case is considered when adaptive Kalman 
filter was not used for preliminary data processing. 

Thus, the best model turned out to be AR(1) + 
trend of 4th order. It provides a possibility for one 
step ahead forecasting with mean absolute 
percentage error of about 3.19%, and Theil 
coefficient is U = 0.024. This coefficient shows that 
this model is generally good for short-term 
forecasting. Statistical characteristics of the models 
and respective forecasts computed with adaptive 
Kalman filter application are given in Table VI. 
Here optimal filter played positive role what is 
supported by the statistical quality parameters. 

Again the best model turned out to be AR(1) + 
trend of 4th order. It provides a possibility for one 
step ahead forecasting with mean absolute 
percentage error of about 2.71%, and Theil 
coefficient is: U  0.019. Thus, in this case the 
results achieved are better than in previous modeling 
and short-term forecasting without filter application. 

Example 4. Statistical analysis of the time series 
selected with application of Goldfeld–Quandt test 
proved that gold prices data create heteroscedastic 
(HS) process with time varying conditional variance. 
As far as the variance is one of the key parameters 
that are used in the rules for trading operations it is 
necessary to construct forecasting models. Table VII 
contains statistical characteristics of the models 
constructed and quality of short-term variance 
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forecasting. To solve the problem we used 
generalized autoregressive HS (GARCH) models 
together with description of the processes trend 
which is rather sophisticated (high order process). 
The models of this type demonstrated low quality of 

short-term forecasts, and quite acceptable 
(EGARCH) one-step ahead forecasting properties. 
The values of MAPE (adapt.) given in the 6th 
column in the adaptation mode show improvement 
of short term forecasting for conditional variance. 

TABLE V. MODELS AND FORECASTS QUALITY WITHOUT ADAPTIVE KALMAN FILTER APPLICATION 

Model type Model quality Forecast quality 
R2 2 ( )e k  DW MSE MAE MAPE Theil 

AR(1) 0.99 25644.67 2.15 49.82 41.356 8.37 0.046 
AR(1,4) 0.99 25588.10 2.18 49.14 40.355 8.12 0.046 
AR(1) + 1st order 
trend 

0.99 25391.39 2.13 34.39 25.109 4.55 0.032 

АР(1,4) +1st order 
trend 

0.99 25332.93 2.18 34.51 25.623 4.67 0.032 

AR(1) + 4th order 
trend 

0.99 25173.74 2.12 25.92 17.686 3.19 0.024 

TABLE VI. MODELS AND FORECASTS QUALITY WITH APPLICATION OF ADAPTIVE KALMAN FILTER 

Model type  Model quality Forecast quality 
R2 2 ( )e k  DW MSE MAE MAPE Theil 

AR(1) 0.99 24376.32 2.11 45.21 39.73 7.58 0.037 
AR(1,4) 0.99 24141.17 2.09 47.29 38.75 7.06 0.035 
AR(1) + 1st  
order trend  

0.99 23964.73 2.08 31.15 22.11 3.27 0.029 

AR(1) + 4th  
order trend 

0.99 22396.83 2.04 21.35 13.52 2.71 0.019 

TABLE VII. RESULTS OF MODELING AND FORECASTING CONDITIONAL VARIANCE 

Model type Model quality Forecast quality 
R2 2 ( )e k  DW MSE MAPE 

(adapt.) 
MAPE Theil 

GARCH(1,7) 0.99 153639 0.113 972.5 515.3 517.6 0.113 
GARCH (1,10)   0.99 102139 0.174 458.7 208.2 211.3 0.081 
GARCH (1,15)  0.99 80419 0.337 418.3 118.7 121.6 0.058 
EGARCH (1,7) 0.99 45184 0.429 67.8 7.85 8.74 0.023 

 
Thus, the best model constructed was 

EGARCH(1,7). The achieved value of MAPE = 
8.74% (and 7.85% in adaptation mode) comprises 
very good result for forecasting conditional variance. 
Further improvements of the forecasts were 
achieved with application of the adaptation scheme 
proposed. An average improvement of the forecasts 
was in the range between 0.8–1.5%, what justifies 
advantages of the approach proposed. Combination 
of the forecasts generated with different forecasting 
techniques helped to further decrease mean absolute 
percentage forecasting error for about 0.5–0.8%.  

IX. DISCUSSION 

The results of computational experiments 
achieved lead to the conclusion that today the family 
of scoring models used including logistic regression, 
Bayesian networks and gradient boosting belong to 

the family of the best current instruments for 
banking system due to the fact they provide a 
possibility for detecting “bad” clients and to reduce 
financial risks caused by the clients. It also should 
be stressed that DSS developed creates very useful 
instrument for a decision maker that helps to 
perform quality processing of client’s statistical data 
using various techniques, generate alternatives and 
to select the best one relying upon a set of 
appropriate statistical criteria. An important role in 
the computational experiments performed played the 
possibility of model adaptation to available and new 
data. The adaptation mode has always generated 
better results than the mode without this adaptation 
feature. The extra model variables can be created by 
combining available statistical data, and 
nonlinearities can be introduced into a model by 
inserting appropriate polynomial members. The 
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system proposed performs tracking of the whole 
computational process using separate sets of 
statistical quality criteria at each stage (each level of 
the system hierarchy) of decision making: quality of 
data, adequacy of models constructed and quality of 
the forecasts (or risk estimates).  

Thus, the systemic approach to modeling and 
forecasting proposed is definitely helpful for 
constructing the DSS possessing the features of 
directed search for the best forecasting model in 
respective spaces of model structure and parameters, 
and consequently to enhance its adequacy. The 
computational experiments with actual data showed 
high usefulness of the systemic approach to 
modeling and forecasting. It is necessary to perform 
its further refinement in the future studies and 
applications. And it is also important to improve 
formal descriptions for the uncertainties mentioned 
and to use them for reducing the degree of 
uncertainty in model building procedures and 
forecast estimation. It was found that influence of 
statistical and probabilistic uncertainties can be 
reduced substantially by making use of respective 
data filtering techniques, imputation of missing 
values, orthogonal transforms, and the models of 
probabilistic type; first of all those are Bayesian 
programming models and techniques.  

X. CONCLUSIONS 

The systemic methodology was proposed for 
constructing DSS for adaptive mathematical 
modeling and forecasting economic and financial 
processes as well as for credit risk estimation that is 
based on the system analysis principles like 
hierarchical system structure, availability of model 
adaptation procedures etc.  

The system developed has a modular architecture 
that provides a possibility for easy extension of its 
functional possibilities with new parameter estimation 
techniques, forecasting methods, financial risk 
estimation, and generation of decision alternatives. 
High quality of the final result is achieved thanks to 
appropriate tracking of the computational processes at 
all data processing stages: preliminary data 
processing, model structure and parameter estimation, 
computing of short- and middle-term forecasts, and 
estimation of risk variables/parameters. The system is 
based on the ideologically different methods of 
dynamic processes modeling and risk forecasting 
(regression analysis and probabilistic approach) what 
creates appropriate basis for hiring various 
approaches to achieve the best results. The illustrative 
examples of the system application show that it can 
be used successfully for solving practical problems of 
forecasting dynamic processes evolution and risk 

estimation. The results of computational experiments 
lead to the conclusion that today scoring models, 
nonlinear regression and Bayesian networks are the 
best instruments for banking system due to the fact 
that they provide a possibility for detecting “bad” 
clients and to reduce financial risks caused by the 
clients. The DSS can be used for supporting decision 
making process in various areas of human activities 
including development of strategy for banking system 
regarding risk management.  

Further extension of the system functions is 
planned with new forecasting and decision making 
techniques based on probabilistic methodology, 
fuzzy sets and other artificial intelligence methods. 
An appropriate attention should also be paid to 
constructing user friendly adaptive interface based 
on the human factors principles. 
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