
UDC 515.2

V.P. Tkachenko,

Chelombitko V.F.
Kharkiv National University of Radio Electronics, Ukraine

IMPLEMENTATION OF SOME OF THE PRINCIPLES OF DESIGN

PATTERNS MEANS OPERATORS LANGUAGE MAPLE
Abstract: The principles of the construction and ornamentation among the

algorithmic language Maple.

Keywords: pattern, geometric transformation, recursive construction, maple

Statement of the problem. Ornament - a pattern that consists of rhythmically

ordered items. The ornament is based on special laws by using certain tools. The

main tool - a geometric transformation. Therefore, the current research will be

aimed at building a formalization of computer technology ornaments, implemented

by means of operators algorithmic language, eg, Maple.

Analysis of recent research and publications. Geometric transformation of

the plane - a vzayemnoodnoznachne display this plane over. The most important

geometric transformation is the movement, ie the transformation that preserves

distance and zoom [1-3]. Examples of central symmetry is parallel transfer, rotate

and axial symmetry. Motif - a major element of ornament, its main component. A

further generalization is building ornaments using computer technology.

The wording of Article goals. Definitions Opportunities implementation of

the principles of construction activ g patterns in an environment algorithmic

language.

The main part. Certainly create graphic designs for decorative wallpapers,

advertising, demonstration equipment. Software for PC patterns usually based on

relatively simple algorithms, which can be regarded as tests of skill

programming. The main issue here is the idea of creating a decorative effect.

Problem. Develop algorithms for compiling and building ornaments on a

plane among the algorithmic language Maple, based on the main principles of

creating patterns.

The main part. If you move a shape without paying respect to their "center",

we obtain a plane-parallel movement of the figure, when any straight line in the

figure is parallel to itself. According to the "center" of the figures can be accepted

any point rigidly connected with the figure.

Of course the "center" figures (xf, yf) is moved relative to the center of the

pattern (xc, yc) by the specific law xf = xc + Fx; yf = yc + Fy, where Fx, Fy - a

function of the parameters. In general, the piece can move, rotating about their

"center" and deformed. The parameters of procedure the figure must include all the

coordinates of the points that connect the lines. Coordinates the i-th point shapes

are determined by the formulas:

xxi: = xf + Kxi * ((xi-xf) * cos (A) - (yi-yf) * sin (A)),

yyi: = yf + Kyi * ((yi-yf) * cos (A) + (xi-xf) * sin (A)),
where A - the angle of rotation with respect to shape its "center", measured on

the left side of the screen coordinate system clockwise in relation to the axis X,

xi, yi - initial coordinates of the i-th point of the figure,

xxi, yyi - new coordinates of the i-th point of the figure,

Khi, Kyi - ratios coordinates of the i-th point of the axes X and Y.

Let us give an example of Maple - in building a pattern in which the realized

set of laws of motion lines with respect to its "center."

q: = evalf (W);

m: = [[0,0], [1,0], [cos (q), sin (q)], [0,0]]:

w: = []: t: = T:

for k to N do

w: = [op (w), m]:

sm: = [m [2], m [3], m [1], m [2]]

m: = (1-t) * m + t * sm:

od:
After the above preparatory unit should make six blocks that differ

coefficients in pairs of trigonometric functions

a1: = plot (w, axes = none, scaling = constrained):

m: = [[0,0], [cos (2 * q), sin (2 * q)], [cos (1 * q), sin (1 * q)], [0,0]]:

w: = []: t: = T:

for k to N do

w: = [op (w), m]:

sm: = [m [2], m [3], m [1], m [2]]

m: = (1-t) * m + t * sm:

od:
As a result of all six units will have to build a workpiece image using the

operator

display (a1, a2, a3, a4, a5, a6, thickness = 2);
In Fig. 1 shows at N = 10 examples of program construction pattern

depending on the parameters W and t.

T = 0.3; W = Pi/3 T = 0.5; W = Pi/3

T = 0.8; W = Pi/3 T = 0.9; W = Pi/3

T = 0.95; W = Pi/3 T = 0.2; W = Pi/2

Rice. 1. Examples of program construction pattern

depending on the parameters T and W.
In programming often use recursive operators, such procedures include

reference to themselves. Such an appeal may be direct - that is the challenge

procedure within the procedure or indirect - call other procedures, within which is

a challenge to the original procedure.

Here is an example of recursive program construction pattern

where drevo procedure calls to the same procedure drevo.

drevo: = proc (L, N, x0, y0)

local i; global s, p;

options remember;

s: = s +1;

p [s]: = plot ([x0 + L * sqrt (M) * sin (M * t) * cos (t),

y0 + L * sqrt (M) * sin (M * t) * sin (t), t =-W .. W]):

if N> 1 then drevo (L / 2, N-1, x0-L, y0 + L);

drevo (L / 2, N-1, x0 + L, y0 + L) fi;

RETURN (display ([seq (p [i], i = 1 .. 2 ^ N-1)], axes = NONE,

scaling = constrained, numpoints = 1000, thickness = 2))

end:

s: = 0: drevo (100, 7, 0, 0);
In Fig. 2 shows examples of recursive program construction pattern

depending on the parameters W and M.

W = Pi/2; M = 1 W = Pi/2; M = 1,5

W = Pi / 2; M = 2 W = Pi / 5; M = 3

Rice. 2. Examples of recursive program construction
pattern depending on the parameters W and M.

It is interesting to create building designs mirror images of the figure. In

this case, the principle of building designs similar to the image mirrored

kaleidoscope. In a kaleidoscope of three mirror system creates the effect of

multiple reflections sixfold set of colored crystals. Mathematically, this principle

of construction of a pattern can be described as follows. There are three output

beams from one point - the axes of symmetry. The angle between the beams is 2

* / 3. We construct the first (initial) figure in the sector between the two

beams. Then the second figure is constructed as a mirror image of the first figure

relative to the second beam, then the third figure, like a mirror image of the other

shapes of the beam with respect to the third and so on.

Here is an example program to create a pattern construction reflections on

three primary figure axis reflection.

fosi1: = x * sin (Pi / 3) - y * cos (Pi / 3);

fosi2: = y;

fosi3: = x * sin (Pi / 3) + y * cos (Pi / 3)

where the angle measured from the axis Ox counterclockwise.

The initial shape (eg, square) specifies the equation in the form

f: = (x, y) -> a - abs (x-x0) - abs (y-y0):
To construct the result of reflection symmetric with respect to the first, second

and third axis of symmetry formula should be used:

X1: = (x, y) -> y * sin (2 * Pi / 3) + x * cos (2 * Pi / 3);

Y1: = (x, y) -> x * sin (2 * Pi / 3) - y * cos (2 * Pi / 3);

f1: = (x, y) -> f (X1, Y1);

X2: = x;

Y2: =-y;

f2: = (x, y) -> f1 (X2, Y2);

X3: = (x, y) -> y * sin (-2 * Pi / 3) + x * cos (-2 * Pi / 3);

Y3: = (x, y) -> x * sin (-2 * Pi / 3) - y * cos (-2 * Pi / 3);

f3: = (x, y) -> f2 (X3, Y3);
Constructs when a = 1,5; x0 = 2; y0 = 1 milestones reflection operators carry

F: = implicitplot (f (x, y), x = -3 .. 4, y = -3 .. 4);

F1: = implicitplot (f1 (x, y), x = -3 .. 4, y = -3 .. 4);

F2: = implicitplot (f2 (x, y), x = -3 .. 4, y = -3 .. 4);

F3: = implicitplot (f3 (x, y), x = -3 .. 4, y = -3 .. 4);

The resulting image (which goes on in the cycle) is constructed by using the

display (F, F1, F2, F3, thickness = 3);
In Fig. 3 shows examples of constructed images.

a) n ochatkove image b) The results of the first reflection region

c) The result of the second reflection d) the result of the third reflection

Rice. 3. Building a symmetrical mirror image kaleidoscope

Conclusions. G activ principles of the patterns can be realized in the

environment of the algorithmic language by creating algorithms for image plane.

Prospects for further research. Further study the principles of design

patterns.

Literature
1. Классификация орнаментов – http://TMN.FIO.ru/works/80x/311/classif.htm

2. http:// graphfunk.narod.ru/ «Графики функций».

3. Котов Ю.В. Как рисует машина. – М.: Наука. 1988. – 224 с.

Аннотация

Ткаченко В.Ф., Челомбитько В.Ф. Реализация некоторых принципов

построения узоров средствами операторов языка MAPLE. Рассмотрены

принципы составления и построения орнаментов в среде алгоритмического

языка Maple.

Ключевые слова: орнамент, геометрические преобразования,

рекурсивные построения, MAPLE.

Aнотація

Ткаченко В.Ф., Челомбітько В.Ф. Реалізація деяких принципів побудови

візерунків засобами операторів мови MAPLE. Розглянуто принципи

складання та побудови орнаментів в середовищі алгоритмічної мови Maple.

Ключові слова: орнамент, геометричні перетворення, рекурсивні

побудови, MAPLE.

	table01
	graphic0F
	table02
	graphic15
	graphic16
	graphic17
	graphic18
	table03
	graphic19
	graphic1A
	table04
	graphic1B

