INFLUENCE OF FRICTION SURFACES PROPERTIES OF COMPOSITE MATERIALS ON ACOUSTIC EMISSION

Authors

  • Sergiy Filonenko National Aviation University Kosmonavta Komarova avenue 1, 03680, Kyiv, Ukraine
  • Oleksandr Kosmach National Aviation University Kosmonavta Komarova avenue 1, 03680, Kyiv, Ukraine

DOI:

https://doi.org/10.18372/2306-1472.54.3867

Keywords:

acoustic emission, amplitude, composite material, energy, friction, law, level, parameter, signal, variation

Abstract

 The simulation of amplitude and energy of acoustic emission resulting signals at friction of composite materials surfaces layers was conducted. The regularities of changes in the amplitude and energy parameters of acoustic emission resulting signals which are depending from hardness of composite materials surfaces layers were determined. The description of regularities of changes with their statistical estimates was conducted.

Author Biographies

Sergiy Filonenko, National Aviation University Kosmonavta Komarova avenue 1, 03680, Kyiv, Ukraine

Doctor of Engineering. Professor.
Director of the Institute of Information-Diagnostic Systems, National Aviation University, Kyiv, Ukraine.
Education: Kyiv Polytechnic Institute, Kyiv, Ukraine (1977).
Research area: diagnostics of technological processes, automatic diagnostic systems.
Publications: over 215 books and articles, 34 patents.

Oleksandr Kosmach, National Aviation University Kosmonavta Komarova avenue 1, 03680, Kyiv, Ukraine

Junior researcher.
National Aviation University, Kyiv, Ukraine.
Education: Chernigiv State Technological University, Ukraine (2008).
Research area: diagnostics of technological processes, signal processing.
Publications: over 30 articles, 4 patents.

References

Baskakov, S.I. Radio circuits and signals. Мoscow, Higher school, 2005. 462 p. (in Russian).

[Баскаков С.И. Радиотехнические цепи и сигналы / С.И. Баскаков. – Москва: Высшая школа, 2005. – 462 с.]

Basu, B.; Venkateswaran, T.; Sarkar, D. 2005. Pressureless sintering and tribological properties of WC–ZrO2 composites. J. of European Ceramic Society. Vol. 25: 1603–1610.

Benabdallah, H.S.; Aguilar, D.A. 2008. Acoustic Emission and its relationship with friction and wear for sliding contact. Tribology Transactions. Vol. 51: 738–747.

Bria, V.; Dima, D.; Andrei, G.; Birsan, I.-G.; Circiumaru, A. 2011. Tribological and Wear Properties of Multi-Layered Materials. Tribology in industry. Vol. 33: 104–109.

Fan, Y.; Gu, F.; Ball, A. 2010. Modeling acoustic emissions generated by sliding friction. Wear. Vol. 268: 811–815.

Filonenko, S.; Nimchenko, T.; Kosmach, A. 2010. Model of acoustic emission signal at the prevailing mechanism of composite material mechanical destruction. Aviation. Vol. 14 (4): 95–103.

Filonenko, S.F.; Kalita, V.M.; Kosmach, A.P.; Kositskaya, T.M. 2010. Model of acoustic emission signal at destruction of the composite material under shear load. Technological systems. N 2 (51): 45–53 (in Russian).

[Модель сигнала акустической эмиссии при разрушении композиционного материала под действием поперечной силы / С.Ф. Филоненко, В.М. Калита, А.П. Космач, Т.Н. Косицкая // Технологические системы. – 2010. – № 2 (51). – С. 45–53].

Filonenko, S.F.; Kalita, V.M.; Nimchenko, T.V. 2009. Model of acoustic emission signal formation at destruction of composite material.Technological systems. N 2 (46): 17–25 (in Russian).

[Филоненко С.Ф. Модель формирования сигнала акустической эмиссии при разрушении композиционного материала / С.Ф. Филоненко, В.М. Калита, Т.В. Нимченко // Технологические системы. – 2009. – № 2 (46). – С. 17–25].

Filonenko, S.F.; Stadnychenko, V.M.; Stahova, A.P. 2008. Modelling of acoustic emission signals at friction of materials’ surface layers. Aviation. Vol. 12. N 3: 87–94.

Filonenko, S.F.; Stakhova, А.P.; Kositskaya, T.N. 2008. Modeling of the acoustic emission signals for the case of material’s surface layers distraction in the process of friction. Proceedings of the National Aviation University. N 2: 24–28.

Hase, A.; Wada, M.; Mishina, H. 2009. Acoustic emission in elementary processes of friction a wear: In-situ observation of friction surface and AT signals. J. of advanced mechanical design, items and manufacturing. Vol. 3: 333–344.

Hong, E.; Kaplin, B.; You, T.; Suh, M.; Kim, Y.S.; Choe, H. 2011. Tribological properties of copper alloy-based composites reinforced with tungsten carbide particles. Wear. Vol. 270: 591–597.

Koutsomichalis, A.; Vaxevanidis, N.; Petropoulos, G.; Xatazaki, E.; Mourlas, A.; Antoniou, S. 2009. Tribological Coatings for Aerospace Applications and the Case of WC-Co Plasma Spray Coatings. Tribology in industry. Vol. 31: 37–42.

Raischel, F.; Kun, F.; Herrmann, H.J. 2005. Simple beam model for the shear failure of interfaces. Phys. Rev. E. Vol. 72: 046126–046137.

Reddappa, H.N.; Suresh, K.R.; Niranjan, H.B.; Satyanarayana, K.G. 2011. Dry sliding friction and wear behavior of Aluminum. Beryl composites. Int. J. of Appl. Engin. Research, Dindigul. Vol. 2: 502–511.

Shcherbakov, R. 2002. On modeling of geophysical problems. Dissertation of Ph.D. Cornell University. 196 p.

Takeshi, T.; Fumiya, T.; Kazuhiro, N.; Shinichiro, A.; Koji, N.; Takanori, I. 2009. Tribological properties of WC/12Co cermet-Fe-Based metallic glass spray coating. Transactions of JWRI. Vol. 38: 75–79.

Downloads

How to Cite

Filonenko, S., & Kosmach, O. (2013). INFLUENCE OF FRICTION SURFACES PROPERTIES OF COMPOSITE MATERIALS ON ACOUSTIC EMISSION. Proceedings of National Aviation University, 54(1), 70–77. https://doi.org/10.18372/2306-1472.54.3867

Issue

Section

MODERN AVIATION AND SPACE TEHNOLOGY