Acoustic emission at loading of composite materials

Authors

  • С.Ф. Філоненко National Aviation University
  • В.М. Каліта National Aviation University
  • О.П. Космач National Aviation University

DOI:

https://doi.org/10.18372/2306-1472.42.1824

Keywords:

acoustic emission, bend, composite material, deformation, diagnostics, fibres, fracture, stress, stretch

Abstract

 The analysis of AE signals is executed, mouldable at destruction of composition material under the action of loading of change. Description of processes is conducted is model and simplest. It is considered, how resilient properties of standard change depending on the enclosed loading, and also it is rotined that the change of axial tension on fibres takes a place at their destruction as a result of achievement of the critical loadings of stretching and bending. This tension changes continuously. However at the beginning of process of destruction this tension can have breaking or continue to grow, but with less speed. At such character of change of dependence of axial tension in time to define (to fix) beginning of process of destruction of fibres of standard possibly only subject to the condition implementation of complete cycle of loading. It is rotined that the AE signals arise (begin to be formed) up directly in the point of beginning of destruction of standard, regardless of type of destruction of fibres (stretch or bend). Registration of AE signals in the process of loading of composite material can be executed for control of achievement of the maximum possible loadings, beginning which irreversible destruction of composite. It is marked, that the AE signals, which are registered at the tests of composite materials have pain composition forms which differ from considered, are real. It is conditioned, foremost, by the simplest description of the presented models which foresee gradual slow enough destruction of fibres. In addition, at description of acoustic radiation it is necessary to take into account more difficult character of redistribution of tensions in composite material, and also kinetics of process of destruction.

Author Biographies

С.Ф. Філоненко, National Aviation University

д.т.н., проф.

В.М. Каліта, National Aviation University

д.ф.-м.н., проф.

О.П. Космач, National Aviation University

асп.

References

Иванов В.И. Акусто-эмиссионный контроль сварки и сварных соединений/В.И. Иванов, В.М. Белов. − М.: Машиностроение, 1981. − 184 с.

An information-measuring system for an acoustic emission signal selection and processing / O. Bukhalo, B.Klym, E.Pochapsky et al. // 15th World conf. On Non-Destr. Testing (15−21 October 2000 in Roma) 2000. – P. 78−82.

Аки К. Количественная сейсмология. Теория и методы / К. Аки, П. Ричардс. – М.: Мир, 1983. − Т2. − 360 с.

Бабак В.П. Модели формирования сигналов акустической эмиссии при деформировании и разрушении материалов / В.П. Бабак, С.Ф. Филоненко, В.М. Калита // Технологические системы. − 2002. − №1(12). − С. 26−34.

Моделі сигналів акустичної емісії при руйнуванні поверхневих шарів пар тертя / В.П. Бабак, С.Ф. Філоненко, В.М. Стадніченко, А.П. Стахова // Проблеми тертя та зношування. − 2007.− Вип.47. − С. 1−8.

Бабак В.П. Моделирование сигналов акустической эмиссии при скачкообразном развитии процессов разрушения / В.П. Бабак, С.Ф. Филоненко, В.М. Калита // Технологические системы. − 2005. − № 3(29). − С. 30−37.

Filonenko S.F. Modelling of acoustic emission signals at friction of materials’ surface layers / S.F. Filonenko, V.M. Stadnychenko, A.P. Stahova // Aviation. − 2008. − Vol. 12, No3. − P. 87−94.

Kun F. Damage in fiber bundle models / F. Kun, S. Zapperi, H. J. Herrmann // Eur. Phys. J.B. − 2000. − Vol. 17, No 2. − P. 269−279.

Moreno Y. Self-organized criticality in a fibre bundle-type model / Y. Moreno, J.B. Gomez, A.F. Pacheco // Physics A. − 1999. − Vol. 274. − P. 400−409.

Kun F. Damage development under gradual loading of composites / F.Kun, H. J. Herrmann // Journal of Materials Science. − 2000. − Vol.35, No 18. − P. 4685−4693.

Nechad H. Creep ruptures in heterogeneous materials / H. Nechad, A. Helmstetter, R.E. Guerjouma, D. Sornette // Phys. Rev. Lett. − 2005. −Vol. 94, No 4. − P. 4.

Hemmer P. C. The Distribution of Simultaneous Fiber Failures in Fiber Bundles/ P. C. Hemmer, A. Hansen // J. Appl. Mech. –1992. – Vol. 59, No 4. – P. 909–914.

Newman W. I. Time dependent fiber-bundles with local load sharing / W.I. Newman, S.L. Phoenix // Phys. Rev. E. − 2001. − Vol. 63, No 2. − P. 20.

Coleman B.D. Time dependence of mechanical breakdown phenomena / B.D. Coleman // J. Ap. Phys. – 1956. – Vol. 27, No 8. − P. 862−866.

Turcotte D.L. Micro and macroscopic models of rock fracture / D.L. Turcotte, W.I. Newman, R. Shcherbakov // Geophes. J. Intern. − 2003. − Vol. 152, No 3. − P. 718−728.

Shcherbakov R. On modeling of geophysical problems:A dissertation for degree of doctor of philosophy / Robert Shcherbakov. − Cornell university. − 2002. − 209 p.

Филоненко С.Ф. Модель формирования сигна-ла акустической эмиссии при разрушении компози-ционного материала / С.Ф. Филоненко, В.М.Калита, Т.В. Нимченко // Технологические системы. − 2009. − №2(46). − С. 17−25.

Филоненко С.Ф. Закономерности изменения параметров акустической эмиссии при разрушении хрупких композиционных материалов / С.Ф. Филоненко, В.М.Калита, Т.В. Нимченко // Технологические системы. − 2009. − №3(47). − С. 27−33.

Guarino A. An experimental test of the critical behavior of fracture precursors / A. Guarino, A. Garcimartin, S. Ciliberto // Eur. Phys. J.B. − 1998. − Vol.6, No 1. − P. 13−24.

Guarino A. Failure time and microcrack nucleation / S. Ciliberto, A. Garcimartin // Europhys. Lett. − 1999. − Vol. 47, No4. − P. 456−461.

Raischel F. Simple beam model for the shear failure of interfaces / F. Raischel, F. Kun, H.J. Herrmann // Phys. Rev.E.− 2005. − Vol. 72, No 4. − P. 11.

Raischel F. Local load sharing fiber bundles with a lower cutoff of strength disorder / F. Raischel, F. Kun, H.J. Herrmann // Phys. Rev. E.− 2006.− Vol. 74(2), No 3. − P. 4.

How to Cite

Філоненко, С., Каліта, В., & Космач, О. (2010). Acoustic emission at loading of composite materials. Proceedings of National Aviation University, 42(1), 133–142. https://doi.org/10.18372/2306-1472.42.1824

Issue

Section

INFORMATION TECHNOLOGY

Most read articles by the same author(s)