MAGNETIC HYPERTHERMIA OF MICROORGANISMS WITH NATURAL FERRIMAGNETIC PROPERTIES
DOI:
https://doi.org/10.18372/2306-1472.79.13835Keywords:
magnetic hyperthermia, pathogenic microorganisms, neutralization, biogenic magnetic nanoparticles, methods of comparative genomics, magnetic dipole interactionsAbstract
Aim and Objectives: Biogenic magnetic nanoparticles of microorganisms are not taken into account when neutralized by their magnetic hyperthermia. The aim is to identify microorganisms, which take into account the characteristics of their own biogenic magnetic nanoparticles can lead to a noticeable increase in the effectiveness of magnetic hyperthermia. Methods: Research the study used methods of comparative genomics, in particular, pair alignment using the Genbank database. The alignment of proteomes of magnetotactic bacteria Magnetospirillum gryphiswaldense MSR-1 with the proteomes of pathogenic microorganisms, which were classified according to the site of localization and the type of internal structure of their biogenic magnetic nanoparticles, was carried out. Results: The genomes of 24 strains of pathogenic microorganisms were analyzed belonging to such genus: Staphylococcus, Pseudomonas, Bacillus, Shigella, Clostridioides, Streptococcus, Peptostreptococcus. It was shown that three of them have crystalline intracellular biogenic magnetic nanoparticles, 11 strains have extracellular crystalline, 8 – intracellular amorphous, 3 – extracellular amorphous. The paper also presents calculations of the dipole-dipole strengths of interactions between the amorphous biogenic nanoparticles of Staphylococcus aureus and artificial magnetic nanoparticles. Discussion: We recommend using methods of comparative genomics for the separation of microorganisms with magnetic properties for the selection of a more effective method of neutralization by magnetic hyperthermia. Thus, 3 strains with crystalline intracellular biogenic magnetic nanoparticles can be neutralized by the magnetic hyperthermia, using their own particles as a magnetic material. Other 21 strains with extracellular crystalline, intracellular amorphous and extracellular amorphous magnetic nanoparticles can be neutralized by magnetic hyperthermia using methods of artificial magnetically labeled. It is shown that the forces of dipole-dipole interactions between amorphous magnetic nanoparticles and artificial magnetic nanoparticles are enough to magnetically labeled of Staphylococcus aureus and further neutralize them using magnetic hyperthermia. Conclusions: The use of the natural ferromagnetic properties of microorganisms will increase the effectiveness of the neutralization of magnetic hyperthermia.
References
Kurono Y., Tomonaga K., Mogi G. (1988) Staphylococcus epidermidis and Staphylococcus aureus in otitis media with effusion. Archives of Otolaryngology-Head & Neck Surgery, vol. 11, no. 114, pp. 1262-1265.
Payne S.C., Benninger M. S. (2007) Staphylococcus aureus is a major pathogen in acute bacterial rhinosinusitis: A Meta-Analysis. Clinical Infectious Diseases, vol. 10, no. 45, pp. 121-127.
Carlin K., Lofmark S., Blad L. (2014) Swedish work on containment of antibiotic resistance. Stockholm, Public Health Agency of Sweden, 134 p.
Tenover F.C. (2006) Mechanisms of antimicrobial resistance in bacteria.The American Journal of Medicine, vol. 119, no. 6, pp. 3-10.
Chen C., Chen L., Yi Y. (2016) Killing of Staphylococcus aureus via magnetic hyperthermia mediated by magnetotactic bacteria. Applied and Environmental Microbiology, vol. 82, no. 7, pp. 2219-2226.
John L., Janeta M., Szafert S. (2017) Designing of macroporous magnetic bioscaffold based on functionalized methacrylate network covered by hydroxyapatites and doped with nano-MgFe2O4 for potential cancer hyperthermia therapy. Materials Science and Engineering: C, vol. 78, pp. 901 -911.
Zee J. (2002) Heating the patient: a promising approach. Ann Oncol. Aug, vol. 8, no. 13, pp. 1173-84.
Heydari M., Javidi M., Attar M. M., Karimi A., Navidbakhsh M., Haghpanahi M., Amanpour S. (2015) Magnetic fluid hyperthermia in a cylindrical gel contains water flow. Journal of Mechanics in Medicine and Biology, vol. 15, no. 05, 15500888: 1 – 16. doi: 10.1142/S0219519415500888
Hildebrandt, B. (2002). The cellular and molecular basis of hyperthermia. Critical Reviews in Oncology/Hematology, vol. 43, no. 1, pp. 33–56.
Ulashchik V. S. (2014) Lokal'naya gipertermiya v onkologii: ispol'zovaniye magnitnogo polya, lazernogo izlucheniya, ul'trazvuka [Local hyperthermia in oncology: the use of a magnetic field, laser radiation, ultrasound]. Voprosy kurortologii, fizioterapii i lechebnoy fizicheskoykul'tury [Questions of balneology, physiotherapy and medical physical culture], vol. 91, no. 2, pp. 48–57. (In Russian)
Perigo E. A., Hemery G., Sandre O., Ortega D. (2015) Fundamentals and advances in magnetic hyperthermia. Applied Physics Reviews, no. 2, pp. 041302-1 – 041302-35.
Freeman C., Halperin E.C., Brady L.W., Wazer D. E. (2008) Perez and Brady's Principles and Practice of Radiation Oncology. Philadelphia, Wolters Kluwer Health/Lippincott Williams & Wilkins. pp. 637–644.
Nikiforov V., Brusentsov N. (2007) Magnitnayagipertermiya v onkologii [Magnetic hyperthermia in oncology].Medical Physics, no. 2, pp. 51–59.
Brusentsov N.A., KomissarovaL.Kh., Kuznetsov A.A. (2002) Evaluation of ferrifluids containing fotosensitizer for the AC magnetic field action to the tumor cells in vitro.J. Eur. Cells and Materials, vol. 3, no. 2, pp. 70–73.
Ahmed K., Zaidi S.F. (2013) Treating cancer with heat: hyperthermia as promising strategy to enhance apoptosis. J. Pak. Med. Assoc., vol. 63, no.4, pp. 504-8.
Banobre-Lopez M., Rodrigues D., Espina B. (2013) Control of bacterial cells growths by magnetic hyperthermia. IEEE transactions on magnetics, vol. 49, no. 7, pp. 3508–3511.
Horobets S.V., HorobetsO.Yu., Butenko K.O., Chyzh Yu. M. (2014) Biomineralizatsiya mahnitnykh nanochastynok bakterialnymy symbiontamy lyudyny [Biomineralization of magnet nanoparticles with bacterial symbionts of man]. Medical perspectives, vol. 19, no. 2, pp. 4-12. (In Ukrainian)
Chekhun V., Horobets S., Horobets O., Demyanenko I. (2011) Mahnitochutlyvi nanostruktury endohennoho pokhodzhennya v klitynakh kartsynomy Erlikha [Magneto-sensitive nanostructures of endogenous origin in Ehrlich carcinoma cells]. Material science of nanostructures, no. 2, pp. 102-109. (In Ukrainian)
Chekhun V., Horobets S., Horobets O., Demyanenko I. (2011) Mahnitninanostruktury v pukhlynnykhklitynakh [Magnetic nanostructures in neoplasm cells]. Visnyk of the National Academy of Sciences of Ukraine, no. 11, pp. 13-20. (In Ukrainian)
BLAST: Basic Local Alignment Search Tool [Internet]. Blast.ncbi.nlm.nih.gov. 2019 [cited 02.07.2019]. Available from: http://blast.ncbi.nlm.nih.gov.
Li W., Pio F., Pawlowski K., Godzik A. (2000) Saturated BLAST: an automated multiple intermediate sequence search used to detect distant homology. Bioinformatics, vol. 16, no. 12, pp. 1105-1110.
Schubbe S., Wurdemann C., Peplies J., Heyen U, Wawer C., Glockner F. (2006). Transcriptional Organization and Regulation of Magnetosome Operons in Magnetospirillumgryphiswaldense. Applied and Environmental Microbiology, vol. 72, no. 9, pp. 5757-5765. doi: 10.1128/AEM.00201-06.
Ullrich S., Kube M., Schubbe S., Reinhardt R., Schuler D. (2005) A Hypervariable 130-Kilobase Genomic Region of Magnetospirillum gryphiswaldense Comprises a Magnetosome Island Which Undergoes Frequent Rearrangements during Stationary Growth. Journal of Bacteriology, vol. 187, no. 21, pp. 7176-7184. doi: 10.1128/JB.187.21.7176-7184.2005.
The Statistics of Sequence Similarity Scores/ National Center for Biotechnology Information. Available at: https://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-1.html.
Gorobets O. Yu., Gorobets S.V., Sorokina L.V. (2014) Biomineralization and synthesis of biogenic magnetic nanoparticles and magnetosensitive in clusions in microorganisms and fungi. Functional Materials, vol. 21, no. 4, pp. 427-436.
Gorobets S., Gorobets O., Kovalyov O., Hetmanenko K., Kovalyova S. (2016) Examining the properties of dry magnetically controlled biosorbent, obtained by the method of mechanical and magneto-hydrodynamic agitation. Eastern-European Journal of Enterprise Technologies, vol. 84, no. 6/10, pp. 57–63.
Vainshtein. M., Suzina N., Kudryashova E., Ariskina E. (2002) New magnet-sensitive structures in bacterial and archaeal cells.Biology of the Cell, vol. 94, pp. 29–35.
Lins U., Farina M., (2001) Amorphous mineral phases in magnetotactic multicellular aggregates. Arch. Microbiol., vol. 176, pp. 323–328.
Machala L., Zboril R., Gedanken A. (2007)Amorphous Iron (III) Oxides - A Review. J. Phys. Chem. B, vol. 111, no. 16, pp. 4003–4018. doi: 10.1021/jp064992s.
Kirschvink J.L., Kobayashi-Kirschvink A., Woodford B.J. (1992) Magnetite biomineralization in the human brain. Proc. Nat. Acad. Sci. USA, vol. 89, pp. 7683–7687.
Drummond D.C., Meyer O., Hong K. (1999) Optimizing Liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacological reviews, vol. 51, no. 4, pp. 691–743.
Dobson J.P., Grassi P. (1996) Magnetic Properties of Human Hippocampal Tissue –Evaluation of Artefact and Contamination Sources.Brain Res. Bull., vol. 39, pp. 255–259.
Bely V., Schlager M.A., Foster H., Reimer A.E., Carter A.P, Yildiz A. (2016) The mammalian dynein-dynactin complex is a strong opponent to kinesin in a tug-of-war competition. Nat. Cell. Biol., vol. 9, no. 18, pp. 1018–1024.
Hill D.B., Plaza M.J., Bonin K., Holzwarth G. (2004) Fast vesicle transport in PC12 neurites: velocities and forces. Eur. Biophys. J., vol. 33, no. 7, pp. 623-32. doi: 10.1007/s00249-004-0403-6.
Mikeshyna H.I., Darmenko Y.A., Gorobets O. Yu., Gorobets S.V., Sharay I.V., Lazarenko O.M. (2018) Influence of biogenic magnetic nanoparticles on the vesicular transport. Acta Physica Polonica, vol. 133, no. 3, pp. 731–733.