MATHEMATICAL OPTIMIZATION MODEL OF AVIONICS COMPLEXATION PROBLEM ON EARLY STAGE OF DESIGNING

UDC 629.735.083.06

1,3,5 NAU Department of Electroenergy Systems, e-mail: aviacosm@nau.edu.ua
2 Scientific and Technical Magazine «ECO»
4 NAU Department of Economics

The article is the sequel of another one of this digest of authors “Approximate optimization solution by Pareto of discrete extremal problem of complexation of new generation avionics” and its development in the direction of creating optimization model and organization under synthesis of avionics structure.

Vindication of optimization criteria and formation of mathematical optimization problem

The solution of integer-valued discrete programming tasks is usually realized by such methods: intercepting method, branch and bound method, dynamic programming method.

In intercepting method the additional limits are input, depending on which there is a precision of algorithms. The essential singularities of branch and bound method are: the need in creating variants tree, identification of limit value for each vertex and cutting out non-prospective vertexes.

The searching of large amount of vertexes leads to increase of solution time. But when using the dual simplex-method there is a need in determine of simplex matrix for each vertex and at the same time the requirements to capacity of on-line storage gets higher.

The solving of discrete programming problems is based on formally-logical scheme of consecutive variants analyses of complex system designing subject to reliability criterion [1–3].

The criteria selection of multicriterion optimization was founded for aircraft instrumentation complex with known aircraft performance characteristics and operational characteristics: new variants and basic variants ("B" index):

\[G_C^b, \Delta G_C^b; \Delta G_C = \Delta G_C^{EC} + \Delta G_C^l + \Delta G_C^F; \]

\[\gamma_C, \Delta \gamma_C; \Delta \gamma_C = \Delta \gamma_C^{aut}; \]

\[V_S^b, \Delta V_S^b; \Delta V_S = \Delta V_S^{w}; \]

\[T_{run}^b, \Delta T_{run}^b; \Delta T_{run} = \Delta T_{run}^{w} + \Delta T_{run}^{AC}; \]

\[C_{f,fr}^b, \Delta C_{f,fr}^b; \Delta C_{f,fr} = \sum_{i=1}^{N} \left[\frac{\tilde{A}_I}{(1 + \tilde{A}_I)} + \tilde{A} \right] \tilde{x}_i + k' \tilde{A} \tilde{A}; \]

where \(G_C \) is highest possible commercial load; \(\gamma_C \) is commercial load coefficient; \(V_S \) is average run speed; \(T_{run} \) is annual run, \(h \); \(A_I \) is discounting degree; \(A_I \) is normative e coefficient of investments’ comparative efficacy; \(x_i \) is variable of model, \(0 – N \), that means \(0 – \) system isn’t chosen, \(1,2,3…N – \) reserve degree).

The main components of efficiency criterion use two values:

- The annual aircraft work content:
 \[B = G_C^{t_c} V_S^{t_d} T_{run}; \]
- and total annual costs for one aircraft:
 \[Z = C_m (R + E_n) + C_{ann}^{t_c} + E_n I', \]

where \(C_{ann} \) is annual maintenance costs in operation; \(I' \) is attendant investments in civil aviation branch, penetrating the aircraft with avionics complex.

In market exchange relations this criterion can be expanded and thus perform the comparative analysis of variants of avionics complexes more seriously.

We use four criteria to compare the complexes cost efficiency:
- annual aircraft work content in tonne-kilometers \(\tilde{A} \);
- total annual costs \(Z \);
- first cost of 1 tkm \(S \);
- annual profit \(P \), where \(t_s \) is published tariff for 1 tkm:
 \[P = \tilde{A} _{ts} - Z. \]

The formula
 \[R = E_n / (1 + E_n)^{t_e} - 1 \]

and product \(C_{cr} (R + E_n) \) we use, where \(C_{cr} \) – cost of purchase of specified complex is designated as \(C \) for \(Z_i \):

\[Z = \tilde{C} + C_{ann} \]
\[\bar{C} = \sum_{i=1}^{C_i} \left[\frac{E_d}{(1 + E_d)^{y_a} - 1} + E_a \right] + k'E_a; \]
\[\bar{C}_{\text{ann}} = C_f T_{\text{run}},\]
where \(C_i\) is cost of separate complex; \(T_{\text{run}}\) is service life of complex; \(C_f\) is first cost of flight hour without depreciation reserves for avionics novation:
\[\bar{C}_{\text{f}} = C_f - \frac{RC}{T_{\text{run}}}.\]
The general formula for calculation of \(B, Z, P\) of new variants of complex:
\[Y_a = Y^a + \sum_{w=1}^{6} K^w_a \Delta x^w_a\]
where \(a \in \{I, II, III, IV\}\) is choosing of one the indexes; \(w \in \{1...6\}\) is sequence number of criterion; \(K^w_a\) is coefficient that is appropriate for variant of complex. Since it is important to measure the changeable part when comparing, optimization criteria can be shown for new variants as:
\[Y_a = Y^a + \sum_{w=1}^{6} K^w_a \Delta x^w_a + Y^0_a - Y^a\]
The values of basic indexes \(\Delta x^0_a, x^0_a\) are determined under existing method.
Classification of variable parameters for calculation of indexes of offered and basic criteria:
– variable parameters of avionics and aircraft of basic equipment set:
 \(G^a, G^a, V^a_S, T^a_{\text{run}}, \bar{C}^a, C^f_{\bar{C}};\)
– fixed characteristics of basic aircraft:
 \(t^\text{max}_p, \Delta g^G, \Delta g^H, \Delta V_{\text{vac}}, g_m, \bar{E}_a;\)
– airway system characteristics of basic variant:
 \(L_{\text{ps}}, t_p, \mu_1, \mu_2, \mu_3;\)
– general technical and economic parameters:
 \(x_{\text{fic}}, \hat{I}_{\text{fic}}, \hat{E}_G, \hat{I}_i, \hat{E}_{\text{Ld}}, \hat{N}_{\text{m}}, \hat{A}_a;\)
– maintenance characteristics of avionics:
 \(y, \hat{E}_G, a, \hat{E}_C, C_{\text{av}}, t, \hat{E}_{\text{vac}};\)
– data assigned for basic variant:
 \(\hat{E}^B_{\text{m}}, K_{\text{m}}, \hat{E}^B_O, \hat{E}_O;\)
– index difference:
 \(\Delta t^w, \Delta g^w, \hat{E}^t B, \hat{E}', \Delta V_{\text{vac}}, \Delta n_{\text{e}};\)
– characteristics of another systems for calculation:
 \(G_{t}, C_{t}, W_{t}, T_{t}, T_{\text{ini}}, t_{t}, t_{\text{ini}}, \tau_{t};\)
As the maximization task \(P\) is equivalent to maximization task \(\ln(P)\), then for greater amounts of argument \(t\) (while \(t=3\), inaccuracy is not more than 10%), \(P_a\) criterion takes the form of:
\[\min \left\{ \sigma_{\text{Dec}}^2 + \sigma_{\text{Dec}}^2 \left(\frac{1}{a} + \frac{1}{a^2} \right) \right\} = \left\{ \frac{\sigma_{\text{Dec}}^2}{a^2} + \frac{\sigma_{\text{Dec}}^2}{a^2} \right\}.\]
In model values \(y_i, x_i\) at \(a^2 + a^2\), \(y_i \in \{0,1\}\), \(y_i \leq x_i\), define the participation of parameters in criterion forming, and \(x_i\) defines the avionics reserve. For correct calculation of criterion the limitation is put into the problem situation:
\[\sum_{i=1}^{n_{\mathcal{P}}} y_i = 1\]
where \(I_{\mathcal{P}}\) is system ensemble, defining \(P\) value.

Vindication of limitations in the synthesis of avionics structure
The effectiveness of solution optimizing depends on developing software, which is peculiar. The general properties limitations are determined by indexes of: weight, cost, power consumption, error-free running time:
– by weight:
 \[\sum_{i=1}^{n_{\mathcal{P}}} m_i x_i \leq SM;\]
– by cost:
 \[\sum_{i=1}^{n_{\mathcal{P}}} C_i x_i \leq SC;\]
– by direct current consumption:
 \[\sum_{i=1}^{n_{\mathcal{P}}} W_i^G x_i \leq SW^G;\]
– by alternating current consumption:
 \[\sum_{i=1}^{n_{\mathcal{P}}} W_i^F x_i \leq SW^F;\]
– by cooling consumption:
 \[\sum_{i=1}^{n_{\mathcal{P}}} W_i^C x_i \leq SV;\]
– by failure running time:
 \[\sum_{i=1}^{n_{\mathcal{P}}} \frac{1}{T_i} x_i \leq \frac{1}{ST}.\]
For each system of complex it is quite difficult to input the limitation on backup degree:
\[0 \leq x_i^\text{max} \leq 1\]
For synthesis of avionics structure the main limit is limitation on reliability of performing of complex functions for flight control, in terms of tolerance probability, i.e. probability of failures. Creation of “chains” is realized with usage of algorithm of aircraft functions performance.
The “chains” define the in equation: \(0 < \text{number} < 1\), \(\text{DUBL} > 1\), realization variants: \(VV = V_1 V_2 ... V_k\)
where the list \(V_1...V_k\) is logical sum of \(SS_j\) elements;
\[V_j = SS_1 + SS_2 + ... + SS_n;\]
\[VV = \{S_0, S_j\} + \{S_2, S_3, S_4\} S_5 + \{S_6, S_7, S_8\} S_9.\]
The structure chart of application package functioning of "ARM constructure"
For variant of system with reserve degree x_i the failure probability on flight time is:

$$Q_i(x_i) = (1 - e^{-x_i \tau_i}) x_i,$$

and if $0 \leq \tau_i x_i << 1$;

$$Q_i(x_i) \approx (\tau_i x_i)^{\varepsilon} ; \quad P_i(x_i) \approx 1 - (\tau_i x_i)^{\varepsilon},$$

where $P_i(x_i)$ is probability of functional task performing during the flight.

In examined criteria and limitation the optimal complexation of avionics task has a view:

$$\sum_{i \in I} C_i^s x_i + \sum_{w \in W \in R} C_w^d y_{w} \rightarrow \text{extr} ; \quad \sum_{r \in R} S_r y_i \rightarrow \min .$$

The realization of linear model solution of optimal complication of avionics by applications of ARM constructor

The application package of ARM constructor includes: database (DB), interface complex, the text files block, the composition of avionics determination block, optimization programs block (figure).

The realization of application package is performed in the following way:

- database and interface complex – by means of “FOXPro”;
- filename extension, interface complex – AVIA.prg program;
- block of avionics programs is realized on PASCAL language with software: the list of functions AVNSO.exe; the formation of avionics variants AVIA.prg with txt-files, FUNC.txt and SOSTAV.txt; optimization of complexation – PASCAL language with software of data TASK.exe, optimization module TASK_LP.exe, results registration TASK_R.exe. The result of task-OPTIM,res file characterizes the discovered solution or its absence (REZULT.txt file).

The database files:

- LTX.dbf – aircraft performance characteristics;
- LTXP.dbf – economic characteristics (variable and fixed);
- LTXPT.dbf – parameters of economic characteristics of aircraft;
- ECONOM.dbf – economic characteristics of environment (airway system, avionics data, accuracy estimation);
- SYSTEM.dbf – characteristic on avionics system;
- SOSTAV.dbf – structure data, weight, block dimensions;
- SIGNAL.dbf – input and output signal;
- FUNCTION.dbf – functions of systems, complexes and avionics as a whole;
- ALGORITM.dbf – signals and functions of systems for performing of avionics function;
- TUNING.dbf – optimization module tuning;
- REZULT.dbf – ARM results;
- OPERATOR.dbf – list of ARM users;
- IMVAR.dbf – description of task variant.

Conclusion

The multicriterion model of optimal avionics complication task is an approximate model on criteria of maximization of technical effectiveness and minimization of reduced costs under parameters limitation. The algorithm is based on principles of decomposition of building of ε-chain of Pareto-optimal solutions for separate complexes by force of consecutive combination of solutions and sifting of not Pareto-optimal. The practical output of modeling is development and realization of application package “Automatized system of choice of optimal avionics structure”.

References

Стаття надійшла до редакції 30.01.06.