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THE ESTIMATE MULTIPLE AS A RESULT OF PRIOR] LINKS ACCOUNTING.
GENERALIZATION OF CRAMER-RAO INEQUALITY

It is shown, that the lowest Cramer-Rao bound ifor statistical estimaiiom could be
changed to accounting a priori links between estirmated pewameitars and the residual
vamiamces could be essentially reduced. The case of two peramsitars being linked with
algebraic linear equation to be estimated is considered. In the second pantt of the paper
the results of “comcordance ™ of fighis information an the base of use of a centre motiom
and kinematics Euler relationships as a priiai links are represented.

In some important cases, when several parameters have to be estimated the priori known
analytical links between them can be used to improve the quality of estimates.

In the rigid body dynamics, an aircraft, for example, the Euler kinematic equations and other
kinemmatic rations can be taken as a priori links. In [1; 2] it was shown, that under some conditions
the ancmmnting of the analytical priori links essentially reduces the residual variances of estimations.
These variances turn out to be lower than the Cramer-Rao bound, when it is counted under
assugption of disregard of a prior links.

We will denote by ¢ the statistics constructed on sample §i; %5,.... .} @nd @sawme it to be @n
estimation of the function @) of the parameter @, Then, the Cramer-Rao inequality is
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where, D(t) denotes that the variance of 1, L(x, ®) is the likelihood function, M is the symbol of

the mesn value.
The next properties of the likelihood function will be used:
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When t is unbiased estimate of (@), there exists the following equality:
j...\ﬁmiﬂ.dmn =T(@)



and therefore
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where

The inequalities (1) turn into equality if and only if the proportiomality between t — x(®) and
BlogZ/%® exists, and the coefficient of proportionality is function of ® only:

e
Then, the variance D(@/) can be expressed as
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We will consider the next task. The estimates of parameters ®i and ©} have to be

obtalned, when likelihood function is Z.=:Z(>ﬁi,.¢.. XnlO,, @5). Accordivig 16 the e
likelihood method the estimates of @i and ®, can be found as a solution of equations
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Assume, that the analytical link between parameters v, and ® , exists in the next form;
'@(@},@2))=@ y
This equation is determined (not stochastic). In order to find the estimates of ®] and ®3

the Lagrange function @Pcaarbbecomppsedcass
@ =llog L +AG.
The estimates of ®] and @, will be found as a solution of equations
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The consideration bellow refers to the case of function G(@li, 0,,..8 P) that condition

Mp}=00 should be fulfilliedi.
Let us introduce the magnitudes containing unknown parameters ay:
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Mean values of 5? and D—ni are expressed as following:
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The determination of elements of matrix & = ““n lKi[ el, 2) can be done on the way of

miniimising magnitudes Mi(ﬁ) {'}and M(ﬁ)f | with respect toe;; i That leads to equations
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Introduce next designations
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Then, in accordance with (5), the system for determination of ey; after corresponding with
transfiormation can be written as

:Mm M, 0 0 :QQn: (Q,J}HAR—,II
Mg My 0 0 |euz .,
0 0 My, M;| | R
0 0 M, M3 |2,
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Let us denote Dif,)— J...J@ ~Tr(dBfLdt..x,, where Dj(t;) is the variance of statistics /,
that is estimate of function %, (8, ).
Taking into account this determination of D{t,) and substituting the values of &, given above

in the right-hand parts of (3) and (4) we can find inequalities
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These inequalities are the results of positiveness of values M(IDJ) They generalize in some
sense is the Cramer-Rao inequalities, and tend to them, when X turns to zero. If estimates are biased

then
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where 8, () are biases. The corresponding inequalities for variances would be obtained from (6) and
(7) with substitution 7}¢8) instead of 7;(8).
In the case when x,(8,) =9, we can see that x*(6)= L+%(83)).
The many — dimensiomality of vector — parameter 8= (8;,83,...,8)) estimation and existence

of A m priori links will not bring principle difference in the course of calculation.
A simple example will be considered assuming that G = ®] +®3 —a =0 and, in addition, that
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In previous formulas
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For the sake of simplification the stochastic values 1x. — @j) and (xn -*@3) are dssuimedd
be uncotrekited. This corresponds to the case when parameters ©jand ©.+ are being estimated and

the probability distribution is
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Presuppose that

2 2
M (aiog ) . M (aiogi]
59, b8g

dlogZ adlogk -
M 80| a@3 0

In the considered case the Lagrange coefficient can be simply obtalned
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where 7. and n, denote different sample values. Then the estimates of 6; and ©., are not % and
as in the separated estimations, but
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If we denote D" the variance of separated estimates (without account of the link), the vari-
ances of improved estimates with account of the link are
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It is seen that coefficient K belongs to the range [0), ll]].. &QD‘G]))§E?f..

Assume that ni = #3 > u; =@, then x1 =KXi; =®,5 and D(@)= 0,5359’.
It is also seen that if measurements of x% are absolutely precise: 62 =® but &} %0, the

vantance of estimate '61 appears nevertheless to be equal zero.
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Because of D = J» ) - —“% it coulld be found, that
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The obtained inequalities can be used to estimate the effectiveness of the accounting of the
priori information and the corresponding complication of algorithms that appear in that case in
different applied tasks.

In solving the problem of obtaining flight parameter estimates we can use as a priori links the
equations of motion of plane centre mass expressed in load factors, kinematics Euler relationships,
kinematics relationships, defining position of plane centre of mass with regard to ground system of
co-ordinates, geometric relationships between angles, between angles and velocity projections. All
these relationships are non-linear and much more complicated in comparison with a prior link
recorded in the first part of this article.
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Let y&]}t) 1 E(Elo,tt,n] \ *eY{j be an array of measured data. The set of equations mentioned

above which have to be used as the priori links is the following

X=fn); Wim)=0; y2Hx), ®

where x -m is dimension vector, [/ -and W—qi) is dimension and n3 is dimension functions
respectively, y —k is dimension vector of observable parameters.

Suppose that it is possible in some way to estimate the phase co-ordinates xt7). expressed in
terms of estimates of observable parameters y{f))= y{f3)= Ay{t). Then estimate x(t) could be used
to calculate secomdary estimate of observable parameters

)= H(#ed)-

Co-ordination of data array is considered to be complete if the following conditions are

satisfied
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Where h,, is normalised precision of y,, parameter measurement, £, <ih,is a given

accuracy of co-ardination problem solution.
It has been shown that co-ordination as a problem can be reformulated as a minimisation
problem of discrepancies (@) and )
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Where ), are coefficients, expressing degree of confidence to y,, array quality weight

coefficients d,, satisfy inequality dj,, << Wy, [A(t —-7@))]:2-.

The second inequality system in (8) is a set of restrictions in conditional optimisation problem,
thefirsttone — its completion cheracteristic. Vector y({)) is taken as co-ordinated deta amay.

Estimate model of measurement error vectory(u)) is chosen in wave fomn
_Q(\(M(p(t) where A is matrix of unknown random parameters, being constant on every i-inisrval
of time 7 & [§i-).% 1, qol())isseaveattor afftiasisstanctionss— Chiaklygkiesy pudjsnumialis. Becomtheereartiom



A process point of view expression for Ay(f) for fixed matrix A ean be considered as an analytical

representation of multiparameter parent pepulatien eentaining the best estimation. It is WSHR
indicating that Ay(f) may be not ergodic funetien.

This shortly described approach of estimate procedure design with use a preri lifks is
wider than the one mentloned above in the first part 6f this paper because of pessibility to take inis
account sysiematic efrors. _

In conclusion we will show somme resulis of flight data processing with use of algerithm ef
co-ordination method applied to estimating the irajectory parameters related to the landing aceident
of AN-225 plane in "Ramenskoe" airpert. Results of caleulation are represenied en Fig.i = 7.
Anelysis of these resulis reveals lew quality of initial data and neeessity t8 apply flight parameter
co-ordination procedure.

Fig.| shows light degree of readability of esilmaie of trajeciory parameters related te the erew
radiocommuniication. 1t is seen that while turning to rufiway the plane teuched the greund by wing
tip and the sixth engine ped. The deseribed fethed can be used for the estimation of fight
parameters in the Incident (aceident) investigation.
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Fig. 1. Ralll augte ind! il axnglbor exsibenaied itk die fdlp off Buley iinamatic alatianaiips:
a-roll angle; b-roll angular velocity: fecording; — - - --- prmary estimats;
—rmem— secondary estimate; —--—---- noncorrected data estimate
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Fig. 2. Plane flight speed on landing approach phase and estimate of lengitudinal 1ead Hasier:

a-flight speed; b-longltudinal load facter; ———— reeerding; —- - - - -- gstimate
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Fig.3. Plane flight altitude estirmie on ianding approach phase:
recording; J3=0,704; J3=0,805 ;
......... 33=1,118 ----—-J3=1162; -------13=1,191
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Fig 4. Statistical estimate of density distribution of ranway hold Syky altitube
= 17,7; Q‘Fi)f}r 531;3'}4
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Fig. 5. Plane lateral deviation on landing approach phase:
33=0,704; ¥3=0,895; - - - - - ¥8=1,086:
""""" 13=1,118; ="~ " 13=1,162;------- I3=L19I; 13=2,841

Fig. 6. Statistical estimate of density distributien funxtion of plane maximum faleral devia:

tion on landing appreach phase:
MIZ = 848m 8; =8§7m
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Fig. 7Plane flight profile estimate:
a-altitude? b-lateral deviation *c-pilot reporting
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