
ІНЖЕНЕРІЯ ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ

№ 3 (19) 2014

36

БАЗИ ДАНИХ, БАЗИ ЗНАНЬ ТА ІНЖЕНЕРІЯ ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ
УДК 004.773:614.29(045)

Melnyk V.M., Zhygarevich O.K., Melnyk K.V.

Lutsk National Technical University

HIGH PRODUCTION

OF JAVA SOCKETS

FOR HEALTH

CLOUDS IN SCIENCE

Computer clouds are using in health science

for its data collections, manipulations and

providing security needs in communications

to exchange. The clouds distribution data

character is using in science applications

created to evaluate the data of the health-

care. The science programs like medical

visualization, genetic and protein

conclusions, map-drag therapy and clinical

decisions systems of support (CDSS) require

high performance messaging libraries with

minimum computer and communication

spends and the effective utilization of the

resources. The high-performance Java

sockets (HPJS) encapsulate the needs of

message high communications between

cloud platforms science applications. HPJS

 effectively uses the Java socket realization for high-performance inner-process communications. With single-copy protocol, re-

usability of the thread and communication overhead reduction, HPJS can use the message exchange in two times quickly to

conventional buffered communication libraries.

Комп’ютерні нагромадження даних використовуються в області охорони здоров’я для зберігання даних осіб, їх

маніпуляції і забезпечення потреб безпечного обміну. Характер розподілу подібних нагромаджень даних може бути

розроблений для застосування в наукових додатках, які розроблені для формування оцінки даних охорони здоров’я. Такі

наукові програми як медична візуалізація, генетичні і протеїнові заключення, лікувально-профілактична терапія та клінічні

системи підтримки прийняття рішень (CDSS) вимагають бібліотек швидкого обміну повідомленнями з мінімальними

комп’ютерними і комунікаційними затратами та ефективним розшаруванням ресурсів. Високопродуктивні Java-сокети

(HPJS) інкапсулюють потреби високопродуктивного обміну повідомленнями між науковими додатками для cloud-

платформ та ефективно використовують Java-сокетну реалізацію для утворення високоефективного зв’язку між

процесами. З єдиною копією протоколу при повторному використанні ниток та зменшенні накладних витрат зв’язку

високопродуктивні Java-сокети можуть виконувати обмін повідомленнями в два рази швидше із звичайними

буферизованими бібліотеками зв’язку.

Компьютерные накопления данных используются в здравохранении для сохранения данных отдельных личностей, их

манипуляции и обеспечения необходимости безопасного обмена. Характер распределения таких накоплений данных может

быть разработан для использования в научных приложениях, которые разработаны для формирования оценки данных

здравохранения. Такие научные программы як медицинская визуализация, генетические и протеиновые заключения, лечебно-

профилактическая терапия та клинические системы поддержки принятия решений (CDSS) требуют библиотек

скоростного обмена сообщениями с минимальными компьютерными і коммуникационными расходами та эффективным

разграничением ресурсов. Высокопродуктивные Java-сокеты (HPJS) инкапсулируют необходимости высокопродуктивного

обмена сообщениями между научными приложениями для cloud-платформ та эффективно используют Java-сокетную

реализацию для образования высокоэффективной связи между процессами. З единой копией протокола и повторном

использовании ниток та уменьшении накладных расходов связи высокопродуктивные Java-сокеты могут исполнять обмен

сообщениями в два раза быстрее с обыкновенными буферизированными библиотеками связи.

Keywords: cloud platform; high-performance Java sockets; health-care; distribution data; decision

systems of support.

Introduction
Last time the cloud computing has emerged as

a computing platform with the main accents of
reliability, ubiquity and availability. Computing
cloud is defined as a service program support
integrated with utility computing conception.
Now, the public, private and hybrid models: all
are creating to collect a data for different aims,
which are equipped additionally with program
software for service. They also have platforms and
infrastructures for the service performance as
utility models [1].

The community of the electron methods
involving into health care the utility provided of
cloud computing models for bio-medical and

health-care data collection, data‟s ubiquitous
availability [2], e-Health Services [3], secure and
social health cloud systems [4], where the benefits
of cloud‟s distributed infrastructure are obvious.
The cloud computing enriches on the cheaper
commodity-hardware running with wide variety
of available and distributed resources. New
technologies are equipped with commodity-
hardware for better multi-task providing through
the parallel tasks realization. The newer multi-
core commodity microprocessors provide the
possibility for electron systems of the health care
organizations to use a microprocessor parallelism
for the science applications and high performance
necessities in health care and biomedicine areas.

ІНЖЕНЕРІЯ ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ

№ 3 (19) 2014

37

Such programs as medical visualization, gen and
protein annotation, map drag therapy and CDSS
are so good representatives for high-performance
computing [4].

Medical visualization applications process
human body images (CT-scanning and MRI) and
generate the most of data scope. The estimation of
this wide-formed data view takes a significant
time and needs more than one resource of
calculation to achieve the results. In case of high-
performed clusters (HPC), image scientific
applications divide all data to smaller parts and
distribute them over a network to computer. They
are naming nodes. These nodes have a parallel
work and heavily relay on inter-node and intra-
node messaging for a calculated result. HPC‟s
divide and conquer approach essentially reduces
the time necessary for health-care and
biomedicine diagnostics between related scientific
applications.

Usually scientific applications need high-
performed clusters to run [5]. These clusters, tied
with more funds and low availability, can be out
of reach for small research laboratories and
individual researchers, but cloud utility-based
model can so help here. With cloud-computing
enabled with high performance to proceed the
information even an individual researcher can run
on an ewer scientific applications and perform the
modeling at any time from his own computer.
Public collecting providers, as Azure Platform
from Microsoft [6] and AWS Amazon [7] are
already providing their infrastructure for scientific
needs. Even so big private cloud platform Open
Nebula [8,9] works with open source code can
serve the limited scale HPC purpose.

In computation platforms appointed for the
research and development, the software has a
significant role in the acceptance. More and more
scientific applications (like Java .Net for
Microsoft) made as program platforms in nearest
generation. Java among the popular programming
languages, were been adopted with few scientific
applications, including medical visualization in
heterogeneous environments, spatial and temporal
modeling for infection illness and support systems
for clinical decisions to make [10-14]. Most of the
high-performed message libraries in production
[15] are basing on a message-passing interface
(MPI). MPI is de-facto HPC-communication
standard, compiled in old languages i.e.
FORTRAN, C and C++ with close to the
minimum support of the cloud computing. Java
now is available on cloud platforms like Microsoft
Azure [16], Amazon AWS and EC2 [17], Google‟s
AppEngine [18], OpenNebula [8], and still lacks
HPC support. Isolated attempt to use Java for
HPC made as a result specification in Java MPI
1.2 [19]. However, the deep analysis proves many
opportunity areas catered before attempting HPC

in platform based in Java. Perspective areas
include high-performance inter-node and intra-
node messaging middle-ware based on MPI.

Proposed HPJS is one of the libraries to
perform high-performance communication
between processes by using the implementation of
the Java sockets. In the HPJS connection layer the
single copy protocol implemented for the extra
copy overhead reducing. For asynchronous
communication were introduced cached thread
pools to provide resource re-usability. HPJS
effectively provides the optimization of the
computation, better resource utilization, and
reduces network overhead for cloud platforms
running applications.

Related works review
In HPC area of HPC scientific applications

most of the research tends to focus on the core of
the application. HPC messaging middle-ware may
often be adopting or neglecting as a third-party
implementation. Java-based smart-home
infrastructure was been proposed in [20] for
health-care needs. Several proposed components
of HARE engine, require high-performance
computation for a prior of the activity recognition
to the life-care support services execution and the
analysis for long-term activity. HARE presumes
that the underlying cloud platform is quit
optimized for substantial data optimal processing.
Instead of Java socket-based communication,
remote method invocation (RMI) or XML-based
messaging, HPJS can increase HARE‟s
performance by evaluating of the data activity
between a few nodes with the high-performance
messaging.

Effectively captured and implemented idea for
Java-based high-performance messaging
perspective were been realized in [21] as
messaging exchange library named MPJ-Express
(MPJE). MPJE provides Java‟s NIO based
messaging implementation, but NIO depends from
its buffering layer results in computation overhead
by involving additional priority byte-copies in its
corresponding buffer before sending and after
receiving messages. HPJS encounters this
overhead to manipulate the bytes directly between
scientific applications, HPJS components and
sockets following a single copy protocol
providing better computation performance and
utilization of the memory.

Java fast sockets (JFS) [22] provide the same
implementation to HPJS and identified in MPJE
catered issues. However, JFS utilizes its own
functions though JNI to reduce the copying and
implements shared memory protocol for clusters
intra-node communication. From other side, HPJS
is a Java implementation for commodity hardware
HPC over clouds.

ІНЖЕНЕРІЯ ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ

№ 3 (19) 2014

38

From the looking point of generic high-

performance Java-based communication

perspective, in [23] Apache‟s application

framework is accepted as a perspective and

popular implementation. It uses the Java-NIO

implementation for high-performance applications

and network high-scalability applications. The

MINA framework is not tailor-made for MPI-

based implementation but MPI-based

implementation can be hold as MINA supports for

the synchronous and asynchronous

communication.

HPJS architecture

HPJS inherits PaaS-based service model. It has

a multiple-level architecture, which can be

stretching out as virtualized and non-virtualized

environments. Fig. 1 shows the deployment stack

with HPJS over the cloud platform. Science

programs and services communicate through

HPJS API than Peer-to-Peer environment setup

executes pre-messaging scripts to initialize the

process of HPJS with the all other HPJS

information running processes and locations of

them. The message pack level packs and unpacks

income and outcome messages in the byte form

and depending on the communication type. It

invokes blocking and unblocking in the

communication.

HPJS realization and results

Fig. 2 describes a HPJS execution flow. Every

component on the scheme describes its own

inputs, outputs and overall interaction of the

system. For internal HPJS communication,

messages are encapsulating as request objects and

response objects for the reusability and better

abstraction. For setup the environment, HPJS

process is initiating by HPJS-daemon, which

loads the configuration file of the machine to

provide the initial information about all nodes of

the HPS clouds. This information includes cloud-

node IP-addresses, port numbers of HPJS-

processes and their execution ranks. To use the

configuration file all the processes share their

unique identifiers (UUID) as resulting parameters

for creation of socket objects keyed with a

respective identifiers. Every process maintains a

socket table containing UUID-identifiers and

respective object sockets. This socket table is

using for the source identification and the

destination objects identification during sending

and receiving messages are executing.

Science applications are communicating with

HPJS via API, which accepts and returns

messages in the byte form. In case of applications

for medical imaging, these bytes can represent the

partial image or estimation results for the part

image. The knowledge of the data sharing is every

time encapsulated by the application. HPJS has no

knowledge about the data context, takes care for

effective inter-process communication. API HPJS

de-couples HPJS core realization from the

scientific applications. The developer of the new

science program needs no knowledge of HPJS

internals, all that application requires is

conformance to the HPJS API.

ІНЖЕНЕРІЯ ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ

№ 3 (19) 2014

39

Instead, to use primitive data types, HPJS

performs manipulations over bytes only running

single copy protocol opposed n distinct operations

of the copy. Single copy protocol copies the array

of bytes in one-go ensuring a near native

accomplishment. Opposite MPI, specifications to

provide the connection between heterogeneous

and non-contiguous data custom objects and

derived data types are not supporting by HPJS

because the sterilization may increase overheads

of the performance. From design prospective of

HPJS, custom objects can increase the

dependency between HPJS core and the science

application. The message packer creates objects of

the respect and response for components of the

HPJS internal interaction. The request and

response objects pack bytes for sending or

receiving by the socket layer and include the

halved actual message: the header and the

payload. The payload part is the byte part taken

for HPJS from science applications. The header

part has a constant size and provides the

information regarding the payload part that has

the dynamic size (depending of the message).

The blocking of the sending and receiving

provides the control of the synchronous

communication of the protocols connection, and

the operation of the sending is not completing

until the messages are all accepted. Non-blocking

send and receive facilitate asynchronous protocols

for the communication and the non-blocking

receive spawns a worker-thread from a cached

threads pool to process response without the

receive hold in the wait. In the cached thread pool,

realization of HPJS re-uses threads and maintains

an optimal threads number in the pool in any

exception time. This model facilitates running

processes to use resources on the cloud node

optimally.

With the resource on the clouding computing

demand model, HPJS process presumes to have

unlimited resources. Instead of the request

availability acknowledgements from the process

of the receive regarding the payload size, the

message has to be sent in one-go. This technique

persuades the inter-process network overhead to

one send for every message. The blocking receive

and non-blocking worker-thread component has to

receive the message with one read. However, it

evaluates the message in two steps i.e., with the

send overhead knowledge or header size, header is

read first. The size and type of the payload has to

be defining from the header bytes, and afterwards

the payload is reading into a byte array.

Fig. 3 describes the analysis of the preliminary
performance of HPJS in contrast with
communication device of the buffered socket that
uses Java NIO‟s byte buffer [21] instead of the
arrays of bytes. The results show correctly that
HPJS performs twice a quickly from the buffered
device that provides additional data copies from
bytes to the byte buffer. These results were been
estimated on a Fast Ethernet based private cloud
structure constructed with Core 2 commodity
microprocessors and a RAM of 8 GB. The results
shown in fig. 3 provide preliminary HPJS proof-
of-concept. The right scalability and tests over
larger clusters and cloud platforms have to be
performed yet.

Conclusions
The lack of Java-based high-performance

messaging middleware for scientific applications
in health clouds has been the main aim for HPJS.
As most of the HPC-based middle-ware utilizes
outdated languages and platforms, HPJS presents
MPI high-performance inner-process
communication built on Java and compatible with
most of the known cloud platforms. With its
single-copy protocol, cached thread pools and
one-go send and receive of the message, HPJS
effectively provides the high-performance inner-
process communication with optimized
computation, reduced network overhead, better
performance and resource using. The HPJS
evolution includes the better intra-node
communication, performance evaluation on
clusters with large scale and cloud platforms and
integration with different scientific application to
complete the true objective of HPJS for scientific
health clouds based on Java.

References

1. Armbrust M., Fox A., Griffith R., Joseph A.

D., Katz R., Konwinski A., Lee G., Patterson D.,

Rabkin A., Stoica I., Zaharia M. View of Cloud

Computing. Communications of the ACM, 53(4),

pg. 53-58, 2008.
2. Rolim, C.O., Koch F.L., Westphall C.B.,

Werner J., Fracalossi A., Salvador G.S. A Cloud

ІНЖЕНЕРІЯ ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ

№ 3 (19) 2014

40

Computing Solution for Patient‟s Data Collection in
Health Care Institutions. eHealth, Telemedicine, and
Social Medicine, ETELEMED, 2010.

3. Fan L., Buchanan W., Thummler C., Lo O.,
Khedim A., Uthmani O., Lawson A., Bell D.
DACAR Platform for eHealth Services Cloud. IEEE
Cloud Computing (CLOUD), 2011.

4. Wooten R., Klink R., Sinek F., Yan B.,
Sharma M. Design and Implementation of a Secure
Healthcare Social Cloud System. IEEE / ACM
International Symposium on Cluster, Cloud and
Grid Computing (CCGrid), 2012.

5. High-Performance Computing Applications.
http://www.altera.com/endmarkets/computer-
storage/computer/hpc/applications/cmpapplications.
html.

6. Microsoft offers HPC on Azure. http://www.
itworld.com/virtualization/128231/microsoft-offers-
hpc-azure.

7. High Performance Computing (HPC) on
AWS. http://aws.amazon.com/hpc-applications.

8. Milojii Dejan Llorente Ignacio M., Montero
Ruben S. OpenNebula: A Cloud Management Tool.
IEEE Internet Computing, March-April 2011.

9. OpenNebula. http://opennebula.org.
10. TIOBE Programming Community Index for

July 2012. http://www.tiobe.com/index.php/
content/paperinfo/tpci/index.html.

11. Fedyukin I.V., Reviakin Y.G., Orlov O.I.,
Doarn C.R., Harnett B.M., Merrell R.C. Experience
in the application of Java Technologies in
telemedicine. eHealth International. 2002.

12. Drishti: Volume Exploration and
Presentation Tool. http://sf.anu.edu.au/Vizlab/
drishti.

13. The Spatiotemporal Epidemiological
Modeler (STEM) Project. http://www.eclipse.
org/stem.

14. Iram Fatima, Muhammad Fahim, Donghai
Guan, Young-Koo Lee, Sungyoung Lee. Socially
Interactive CDSS for u-Life Care. The 5-th ACM
International Conference on Ubiquitous Information
Management and Communication (ACM ICUIMC
2011), Seoul, Korea, February 21-23, 2011.

15. Snir Marc, Otto Steve W., Walker David W.,
Dongarra Jack, Huss-Lederman Steven. MPI: The
Complete Reference. 0262691841, MIT Press,
Cambridge MA, USA, 1995.

16. Windows Azure SDK for Java.
http://www.windowsazure.com/enus/develop/java

17. AWS SDK for Java.
http://aws.amazon.com/sdkforjava.

18. App Engine Java Overview.
https://developers.
google.com/appengine/docs/java/overview.

19. MpiJava 1.2: API Specification.
http://www.open-mpi.org/papers/mpijava-spec.

20. Asad Masood Khattak, Phan Tran Ho Truc,
Le Xuan Hung, La The Vinh, Viet-Hung Dang,
Donghai Guan, Zeeshan Pervez, Manhyung Han,
Sungyoung Lee, Young-Koo Lee. Towards Smart
Homes Using Low Level Sensory Data. Journal of
Sensors, 2011.

21. Baker M., Carpenter B., Shafi A. MPJ
Express: Towards Thread Safe Java HPC. IEEE
International Conference on Cluster Computing,
2006.

22. Guillermo L. Taboada, Juan Tourio, Ramn
Doallo. Java Fast Sockets: Enabling high-speed Java
communications on high performance clusters.
Computer Communications 2008.

23. Apache Mina Framework.
http://mina.apache. org.

Information about authors:

Melnyk Vasyl Mykhaylovych – PhD, Assistant Professor, Assistant Professor

of Computer Engineering Department of Lutsk National Technical University.

Scientific interests: computing, programming and sockets.

E-mail: melnyk_v_m@yahoo.com

Zhyharevych Oksana Kostyantunivna – Assistant Professor of Computer

Engineering Department of Lutsk National Technical University. Scientific

interests: computer programming, simulation-based semantics.

E-mail: oz_lutsk@mail.ru

Melnyk Kateryna Victorivna – PhD, Assistant Professor, Assistant Professor

of Computer Engineering Department of Lutsk National Technical University.

Scientific interests: computational intelligence systems.

E-mail: ekaterinamelnik@gmail.com

