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This article reviews method of calibration of 

COCOMO software cost estimation model by 

reduction of the main equation as well as 

scientific and mathematical method that lied 

foundations for it. 

 

У статті розглядається метод калібру-

вання моделей оцінки вартості програмно-

го забезпечення COCOMO шляхом редукції 

основного рівняння і наукові та матема-

тичні методи, що були покладені в його 

основу. 

 

В статье рассматривается метод калиб-

ровки модели оценки стоимости програм-

много обеспечения COCOMO путем редук-

ции основного уравнения, а также научные 

и математические методы, которые легли 

в его основу. 
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Introduction  

With the significant growth of software com-

plexity methods for software cost estimation be-

came necessary condition of the success of any 

software project. But over the years of software 

cost estimation models’ improvement still most of 

the models are not generalized and that is the rea-

son for the appearance of various calibration tech-

niques and methods aiming to improve the quality 

of software cost estimation results of a given 

model for a specific company domain.  

This article presents the results of scientific re-

search in the field of software cost estimation 

model calibration and proposes the special method 

of calibration of COCOMO model via reduction of 

the main equation of the model. 

 

The mathematical model 

In this method, a number of ideas are taken 

from the relevance of features that were discussed 

in [1], and the evaluation criteria for prediction 

models in [2], [3] and [4]. This method aims to 

find the optimal feature subset that enables higher 

accuracy and lower variability of results than the 

general model with the full feature set. Therefore it 

is important to build the mathematical model and 

define corresponding terminology. For example, 

the relevance of features is defined to show 

whether the feature subset is relevant to the model 

or not. The optimal feature subset not always 

includes all relevant feature subsets but generally it 

shouldn’t include the irrelevant feature subset. 

𝑃𝑀 = 𝑎 ∗  𝐾𝑆𝐿𝑂𝐶𝑏 ∗ ( 𝐸𝑀𝑗 )     (Eq. 1) 

where 

PM – person months; 

EM – effort Multipliers shown in Table2.4; 

KSLOC – size as thousand lines of code, is 

estimated or converted from a function point met-

ric; 

a and b – domain-specific parame-

ters/constants. 

𝑃𝑀 = 𝐴 ∗  𝐾𝑆𝐿𝑂𝐶𝐵+1.01∗ 𝑆𝐹𝑖
5
𝑖=1  ∗

( 𝐸𝑀𝑗
17
𝑗=1 ) (Eq. 2) 

where 

A – baseline multiplicative constant; 

B – baseline exponential constant; 

Size – Size of the software project measured in 

terms of KSLOC (thousand of source lines of 

code) or function points related to programming 

language; 

SF – scale factor; 

EM – effort multiplier; 

Definition 1. Model. These models are the 

same as the ordinary COCOMO 81 model shown 

in Equation 1 or the COCOMO II model shown in 

equation 2 except that it uses fewer model 

parameters (calibration features, e.g. effort 

multipliers). 

Definition 2. Feature. A feature, sometimes 

called a parameter, an attribute, a factor, or a cost 

driver, describes some characteristics of a project 

instance. 

Definition 3. Feature Subset. A feature subset 

includes one or more than one but not all 

parameters of the model. 
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Definition 4. Full Feature Set. A full feature 

set includes all parameters of the model. 

Definition 5. Accuracy. COCOMO’s 

performance is often measured in terms of 

PRED(30). PRED(N) is calculated from the 

relative error, or RE (shown in equation 3), which 

is the relative size of the difference between the 

actual and estimated value. Given a data set of size 

D, a Training set of size (Train=|Train|) ≤ D, and a 

test set of size T=D- |Train|, then the mean 

magnitude of the relative error, or MMRE (the 

mean magnitude of relative error, shown in 

equation 5), is the percentage of the absolute 

values of the relative errors, or MRE (the 

magnitude of relative error shown in equation 4), 

averaged over the T items in the test set. PRED(N) 

for each hold-out experiment is calculated with 

equation 6. 

𝑅𝐸𝑖 =
𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑖−𝑎𝑐𝑡𝑢𝑎𝑙 𝑖

𝑎𝑐𝑡𝑢𝑎𝑙 𝑖
                     (Eq. 3) 

𝑀𝑅𝐸𝑖 = 𝑎𝑏𝑐(𝑅𝐸𝑖)                            (Eq. 4) 

𝑀𝑀𝑅𝐸 =
100

𝑇
 𝑀𝑅𝐸𝑖
𝑇
𝑖=1                   (Eq. 5) 

𝑃𝑅𝐸𝐷(𝑁)ℎ =
100

𝑇
  

1 𝑖𝑓 𝑀𝑅𝐸𝑖 ≤
𝑁

100

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 𝑇
𝑖=1  (Eq. 

6) 

In this approach, Hold-out experiments are 

conducted; the accuracy of the model is defined in 

equation 7 as the mean of PRED(N) in all hold-out 

experiments in the same calibration dataset: 

𝑃𝑅𝐸𝐷 𝑁 =
1

𝑛
 𝑃𝑅𝐸𝐷(𝑁)ℎ

𝑖𝑛
𝑖=1          (Eq. 7) 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. An Example for PRED(30)=50 

 

An example is shown in Figure 1, a 

PRED(30)=50% means that half the estimates are 

within 30% of the actual results. The results are 

reported in terms of PRED(N), not MMRE. This is 

a pragmatic decision as PRED(N) is easier 

understood by business users than MMRE. Also, 

there are more PRED(N) in reports in the literature 

than MMRE, possibly due to the influence of the 

COCOMO researchers who reported their 1999 

study using PRED(N) [5]. 

Definition 6. Variability. PRED(N) is 

calculated for different ―holdout‖ samplings of the 

calibration data. Holdout samplings use 

randomized subsamples of the data to calibrate 

PRED value and the unsampled data to calculate 

PRED value. Different samplings produce different 

PRED(N) values. Μ shown in equation 8 is 

denoted as the mean of PRED(N) from all hold-out 

experiments. Variability of the estimation in the 

model, denoted as V in equation 9, shows how 

much spread is in the estimation. Standard 

deviation σ in Equation 10 is used to measure the 

variability of the accuracy of the model in this 

approach: 

𝜇 𝑥 =
1

𝑁
 𝑥𝑖
𝑁
𝑖=1                                  (Eq. 8) 

𝜇 𝑥 =
1

𝑁
 𝑥𝑖
𝑁
𝑖=1                                  (Eq. 9) 

𝜎 =  𝑉                                              (Eq. 10) 

A smaller σ provides more ―confidence‖ in 

using PRED(N)=μ than larger σ since all the 

values are closer to μ . Small σ indicates small 

variability in estimations while large σ indicates 

large variability in estimation. 

Definition 7. Better feature subset. Given an 

learner L, a training dataset and a test dataset with 

the feature subsets X1 , X 2 , ..., Xn , a better feature 

subset, Xbet, is the feature subset X
i
 that provides 

higher accuracy without increasing variability than 

those of the full feature set X of the general the 

model: 

Accuracy(X
i
 ) > Accuracy(X ) і Variability(X

i
 

)<Variability(X) 

For any 1≤ j ≤ n                                 (Eq. 12) 

Definition 8. The best accuracy feature subset. 

Given a learner L, a training dataset and a test set 

with the better feature subsets X
1
bet, X

2
bet , ..., X

n
bet , 

the best accuracy feature subset, Xacc, is the better 

subset X
i
bet that maximizes the accuracy among the 

better feature subsets: 

For any 

1≤ j ≤ n                                                 (Eq. 13) 

Definition 9. The least variability feature 

subset. Given a learner L, a training dataset and a 

test set with the better feature subsets X
1
bet, X

2
bet , 

..., X
n
bet , the least variability feature subset, Xsd, is 

the better subset X
i
bet that minimizes the SD 

(standard deviation) among the better feature 

subsets: 

 
For any 1≤ j ≤ n                                 (Eq. 14) 

Definition 10. The optimal feature subset. 

Given a learner L, a training dataset and a test set 
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with the better feature subsets X
1

bet, X
2
bet , ..., X

n
bet  , 

an optimal feature subset, Xopt, is the better subset 

X
i
bet that maximizes the accuracy among the better 

feature subsets: 

 
For any 1≤ j ≤ n                                 (Eq. 15) 

Definition 11. The relevance of a feature. If 

adding a feature Xi into any feature subset that does 

not include Xi , or removing Xi from any feature 

subset that includes Xi will change the accuracy of 

the model, the feature Xi is strongly relevant to the 

model. If a feature Xi is not strongly relevant and 

there exists such a feature subset, adding Xi into 

the feature subset that does not include Xi or 

removing Xi from the feature subset that 

includes Xi will change the accuracy of the 

model, the feature Xi is weakly relevant to the 

model. If a feature Xi is strongly relevant or weakly 

relevant, Xi is relevant to the model. If a feature Xi 

is neither strongly relevant nor weakly relevant, Xi 

is irrelevant to the model. This approach apply the 

Wrapper – feature subset selection implementation 

method with k-fold cross validation to evaluate the 

features of the model and N is the number of how 

many times a feature Xi is selected in the k-fold 

cross validation experiments:  
1) Xi is strongly relevant if and only if N = k 

(such as Size); 

2) Xi is weakly relevant if 1≤ N < k ; 

3) Xi is relevant if 1≤ N ≤ k ; 

4) Xi is irrelevant if and only if N = 0.         

(Eq. 16) 

Normally, removing the irrelevant features 

results in improvement of the performance of the 

model. The strong relevant features should always 

be kept in the model and removing any strong 

feature will degrade the performance of the model. 

The next section will show how this model is 

implemented with the machine learning methods 

and statistical methods. 

Methods Applied in the Approach. Machine 

Learning is defined as the study of computer 

algorithms that improves automatically through 

experience [6]. Applications with machine learning 

techniques learn when they change their behavior 

in a way that makes them perform better in the 

future [7]. A number of research applied machine 

learning and statistical methods in software cost 

estimation [8], [9], [10], [11], [5], [12], [13], [14], 

and [15]. The most successful approach is [5], 

which has been used to calibrate COCOMO II 

from 1998. In this research approach shown in 

Figure 2 for software cost estimation, machine 

learning techniques are used to formulate the 

process and build the model from the training data, 

and statistical methods are used to test, validate 

and evaluate the process and the model built by 

machine learning on the test set. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

Figure 2. The integration of different techniques and methods in the approach 



ІНЖЕНЕРІЯ ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ                                                                                                                      

№4(8)   2011 

© Баценко Д.В.,  2011 8 

Linearization 

Ordinary least squares regression and M5 

model tree are linear models. It is known that in 

case when linear model is applied to a non-linear 

relationship, the performance of the model will be 

decreased. COCOMO 81 shown in Equation 17 

and COCOMO II shown in Equation 18 are 

exponential models, with the assumption that the 

changes of effort valu grow faster than the changes 

of size value. The logarithmic transformation were 

used to transform COCOMO 81 and COCOMO II 

into linear models. 

Linearized COCOMO 81 model: 

𝑙𝑛 𝑃𝑀 = 𝛽0 + 𝛽1 ∗ ln 𝑆𝑖𝑧𝑒 + 𝛽2 ∗
ln 𝐸𝑀2 + ⋯+ 𝛽16 ∗ ln(𝐸𝑀16)                                    
(Eq.17) 

Linearized COCOMO II model: 

𝑙𝑛 𝑃𝑀 = 𝛽0 + 𝛽1 ∗ ln 𝑆𝑖𝑧𝑒 + 𝛽2 ∗ 0.01 ∗
𝑆𝐹1 ∗ ln 𝐸𝑀2 + ⋯+ 𝛽6 ∗ 0.01 ∗ 𝑆𝐹5 ∗
ln 𝑆𝑖𝑧𝑒 + 𝛽7 ∗ ln 𝐸𝑀1 + ⋯+ 𝛽23 ∗ ln(𝐸𝑀17)       
     (Eq. 18) 

All these transformations create a new 

parameters that are full mathematical equivalents 

to the original parameters, but are expressed in 

different measurement. 

 

Clustering and Analyzing Project Features 

In this approach, the most promising features 

in a given dataset are identified with learning 

algorithm - FSS (Feature subset selection). As the 

data sets may contain several extraneous features 

which can reduce the efficiency of the model, this 

approach helps us identify the important attributes 

and remove redundant ones. 

If only the most relevant features were to be 

selected and given to the learning algorithm they 

can produce smaller models. This enhances the 

understanding of the dataset or domain under 

consideration. Dimensionality reduction also 

speeds up the learning process. 

In this study, the WRAPPER FSS method is 

applied, which is a FSS method evaluating 

parameter sets by using a learning scheme and 

statistical re-sampling technique such as cross 

validation to estimate the accuracy of the learning 

scheme for a set of attributes, and implemented in 

WEKA [7] (which is a data mining toolkit, free, 

open source, well documented, compatible on 

many platforms, and easy to install). When using 

WRAPPER, a target learner is augmented with a 

preprocessor that used a heuristic forward select 

search to grow subsets of the available features. At 

each step in the growth, the target learner is called 

to determine the performance of the model learned 

from the current subset. Subset growth is stopped 

when the growth is stale; i.e. after a MAX STALE 

number of times, adding attributes has not 

improved the performance. 

For example, suppose the set of attributes were 

{A,B,C,D,E,F,...,Z} and MAX STALE was 2. 

WRAPPER starts by selecting one attribute at 

random (e.g. C) and score its performance. 

Selected = {C} Score = 30 Stale = 0 

Next, another randomly selected attribute (e.g. 

B) is added and scored: 

Selected = {C,B} Score = 50 Stale = 0 

Note that the addition of B is not a stale 

addition since it improves the score. 

However, the addition of the next randomly 

selected attribute (e.g. E) does not improve the 

score, thus is stale increments: 

Selected = {C,B,E} Score = 40 Stale = 1 

Similarly, adding D also fails to improve the 

score beyond just using {C,B} thus is scale 

increments again. 

Selected = {C,B,E,D} Score = 42 Stale = 2 

Since MAX STALE has been reached, 

WRAPPER would remove from the selected set all 

the attributes implicated in the stale growth 

({E,D}). The search would then continue, using 

other attributes. 

Figure 3 shows Wrapper is applied in RPM 

approach. First, the data is divided into 10 equal-

size subset randomly. For each time, one leave-

one-out data is used. The feature list - FL is the 

input of the best first search. In the first round, the 

search sends each feature in the feature list to the 

target learner, then the target learner learn the 

model with that feature plus the features from the 

selected list - SL, and the evaluation function is 

applied. After the first round, the search adds the 

feature that makes the model perform best into the 

selected list and remove it from the feature list. 

Then it checks whether it should stop or not. Then 

the following is the second round, the third round 

… and so on. 

In RPM, minimizing the root mean-square 

error (RMSE) is used as the evaluation function. 

The ―Stop criteria‖ is that if the RMSE is increased 

each time in the last 5 expansions, the search stops. 

If it does reach the stop criteria, it output the 

selected feature subset that yields the best 

performance in the model. 

There are 10 leave-one-out data, so 10 selected 

feature subsets are obtained. 

Then RPM uses how often the feature is 

selected as its ranking. Note that, SIZE is always 

selected and it gets the highest ranking. 

The core technology used in this study is 

FSS (feature subset selection) and FSS is an 

efficient heuristic search through subsets of the 

available attributes. The goal of this search is 
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to find a subset that gives similar, if not 

superior, performance than using all the

 attributes. Equation 1 demonstrates how large 

that space can be. 
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Figure 3. The Wrapper in RPM 

 

 

There are 15 parameters except for SIZE (total 

16 parameters in COCOMO 81). An exhaustive 

search through all possible subsets would have to 

explore the 32768 sets as shown in Equation 19. It 

is assumed that only 6 most promising feature 

subsets are identified with the method, and 20 

seconds are needed for each hold-out experiment 

(training set and test set are separated) for each 

PRED of PRED(25, 30) on 60 project instances in 

that domain, the number of total seconds as shown 

in equation 20, indicates that 1.25 years are needed 

to build the model shown in equation 21. 

𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑆𝑢𝑏𝑠𝑒𝑡 =  𝐶15
𝑖 = 3276815

𝑖=1    (Equation 19) 

𝐻𝑜𝑙𝑑𝑜𝑢𝑡 = 0.5 ∗ 30 ∗ 32768 ∗ 2 = 983040
        (Eq. 20) 

𝐷𝑎𝑦 = 983040 60 60 24 = 11.38 
        (Eq. 21) 

 

𝑆𝑒𝑐𝑜𝑛𝑑𝑠 = 0.5 ∗ 30 ∗ 6 ∗ 2 = 18    (Eq. 22) 

Fortunately, this study did not take 11.38 days. 

The FSS methods used in this research is so 

efficient that these experiments required only the 

180 seconds as shown in Eq. 22. 

One of the major advantages of the 

WRAPPER approach is that, if some target learner 

is already implemented, then the WRAPPER is 

simple to implement. Also, in their comparative 

evaluation of feature subset selection techniques 

[16], Hall and Holmes conclude that WRAPPER is 

the best FSS mechanism, if the data set is not too 

large. At each step in the heuristic search, 

WRAPPER makes another call to the target 

learner. Hence, it may be too slow for large data 

sets. The data sets used in this study are small 

(maximum size: 200 instances) and hence are 

amenable for WRAPPER. 

 



ІНЖЕНЕРІЯ ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ                                                                                                                      

№4(8)   2011 

© Баценко Д.В.,  2011 10 

 

Table 1  

Wrapper Results for the COCOMO 81 Data 

 

COCOMO 81 data with LSR Approach: 63 Instances 

Parame-

ter 
60 Folds 50 

Folds 

40 

Folds 

30 

Folds 

20 

Folds 
10 Folds 

VEXP 100 100 100 100 100 100 

LEXP 100 98 100 100 100 100 

TIME 95 98 93 100 100 100 

LOC 100 100 100 100 100 100 

RELY 93 98 93 100 100 90 

PCAP 72 82 73 63 70 60 

AEXP 82 76 68 73 70 50 

TURN 80 86 78 63 75 50 

ACAP 47 48 50 50 55 50 

SCED 75 80 73 53 75 40 

DATA 15 12 18 13 10 30 

STOR 15 12 18 13 10 30 

MODP 18 24 25 20 20 20 

CPLX 15 12 25 23 20 20 

VIRT 12 8 18 13 10 10 

TOOL 13 6 8 3 25 0 

 

 
Table 2  

Wrapper Results for the NASA 60 Project Data 

 

NASA 60 data with LSR Approach: 60 Instances 

 Parame-

ter 

60 

Folds 

50 

Folds 

40 

Folds 

30 

Folds 

20 

Folds 
10 Folds 

TURN 100 98 100 100 100 100 

ACAP 100 100 100 97 100 100 

TIME 100 100 100 100 100 100 

LOC 100 100 100 100 100 100 

STOR 95 92 93 87 90 80 

VEXP 60 60 65 67 70 70 

DATA 23 14 20 20 20 40 

AEXP 8 2 5 3 0 20 
PCAP 5 10 5 7 0 10 

MODP 0 14 3 3 5 10 

VIRT 0 0 8 3 20 10 

RELY 3 2 5 7 0 0 

TOOL 0 0 0 3 10 0 

CPLX 3 10 5 7 5 0 

LEXP 2 10 0 0 5 0 

SCED 5 4 3 3 0 0 

 

Wrapper uses k-fold cross validation in 

Wrapper. It is applied with LSR approach on 

COCOMO 81 and NASA 60 project data from 10 

folds to 60 folds to chose the right number of folds 

needed. As shown in Table 2 and 3.2, there is no 

evidence that conducting more than 10-way cross 
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values alters the conclusions that could be found in 

a 10-fold. A similar pattern was observed by 

Wrapper with another approach M5 model 

tree. There is another interesting result: 

COCOMO81 data are much more diverse than 

NASA data as the significance of different 

parameters in COCOMO 81 are more effective 

than those in NASA. The parameters are more 

correlated in the projects that could have similar 

nature from an organization than in those projects 

crossing different  organizations. Removing such 

correlated features will increase the performance of 

the model. 

 

Best First forward selection Search Used in 

Wrapper 

Best first forward selection search is an AI 

search strategy and more robust than hill-climbing. 

Best first forward selection search will select the 

most promising feature, which mostly improves 

the accuracy of the model from the features 

generated so far and not expanded. If the path 

being explored begins to appear less promising, it 

can back-track to a more promising previous 

subset and continue the search from there. To 

avoid searching the entire search space, the 

following stop criterion for best first forward 

selection search is used: if it can not find a feature 

that improve the estimation accuracy of the model 

in the last n expansions, it will stop and return the 

best solution so far (n in these experiments is set to 

5 as it is the default value in WEKA [7]). 

Ordinary Least Squares Regression 

Ordinary Least Squares regression (LSR) 

method is the classical statistical approach of 

general linear regression modeling using least 

squares. It has been widely known and discussed 

extensively. LSR is the statistical procedure to 

estimate the linear relationship between the 

dependent variable Y (the prediction of the model) 

and the independent variables 1 X , .., i X , .. n X 

(the parameters of the model). LSR minimizes 

squared error with equation 23. I β is calculated 

with mathematical matrix algorithms with equation 

24. 

 

𝒀𝒊 = 𝜷𝟎 + 𝜷𝟏𝑿𝟏𝒊 + 𝜷𝟐𝑿𝟐𝒊 + ⋯+ 𝜷𝒌𝑿𝒌𝒊 + 𝜺𝒊 
 

NASA effort data used in this study are 

available on-line at the PROMOSE repository of 

public domain software engineering data set: 

http://promise.site.uottawa.ca/SERepository/datase

ts/cocomonasa.arff. For example, if LSR is applied 

LSR into COCOMO 81 linear model with the 

NASA 60 projects without eliminating the co-

linear parameters and selecting attribute method, 

here is the linear regression model with 10-fold 

cross-validation: 

ACT_EFFORT = 

-1.1554 * AEXP + 

2.7992 * DATA + 

-0.1527 * PCAP + 

-6.2363 * VEXP + 

-1.5573 * MODP + 

-1.1246 * RELY + 

0.1986 * TOOL + 

1.1126 * TURN + 

0.8644 * CPLX + 

2.4129 * LEXP + 

1.3613 * SCED + 

-0.6794 * VIRT + 

3.2141 * ACAP + 

77 

-0.745 * STOR + 

2.8783 * TIME + 

1.0712 * LOC + 

1.3462 

Correlation coefficient is 0.9825. Mean 

absolute error is 0.1896. Root mean squared error 

is 0.2579. Relative absolute error is 16.0925 %. 

Root relative squared error is 18.3653 %. The 

accuracy for this linear regression model of 

COCOMO 81 are PRED(25)=70 and 

PRED(30)=75. 

 

Summary 

Presented mathematical model for the calibra-

tion of COCOMO model via reduction of it’s main 

equation increases the accuracy of the model for 

specific company domain, but decreseas the accu-

racy of the model for the generalized case. The 

accuracy of calibration depends on the amount of 

historical data in the company that is used to cali-

brate the model. Some variation in calibrated 

model results may appear if the company changes 

the specifics of the software projects being devel-

oped. This may require recalibration of the model 

to accont for new specifics, or otherwise accuracy 

may be even worse than for the generalized CO-

COMO model.  
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