
ІНЖЕНЕРІЯ ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ

№4(8) 2011

© Баценко Д.В., 2011 5

ОЦІНКА ВИТРАТ ТА ВАРТОСТІ ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ
UDC 004.413:338.5(045)

D. Batsenko

National Aviation University

METHOD OF

CALIBRATION OF

COCOMO MODEL VIA

REDUCTION OF THE

MAIN EQUATION

This article reviews method of calibration of

COCOMO software cost estimation model by

reduction of the main equation as well as

scientific and mathematical method that lied

foundations for it.

У статті розглядається метод калібру-

вання моделей оцінки вартості програмно-

го забезпечення COCOMO шляхом редукції

основного рівняння і наукові та матема-

тичні методи, що були покладені в його

основу.

В статье рассматривается метод калиб-

ровки модели оценки стоимости програм-

много обеспечения COCOMO путем редук-

ции основного уравнения, а также научные

и математические методы, которые легли

в его основу.

Keywords: calibration, COCOMO, software.

Introduction

With the significant growth of software com-

plexity methods for software cost estimation be-

came necessary condition of the success of any

software project. But over the years of software

cost estimation models’ improvement still most of

the models are not generalized and that is the rea-

son for the appearance of various calibration tech-

niques and methods aiming to improve the quality

of software cost estimation results of a given

model for a specific company domain.

This article presents the results of scientific re-

search in the field of software cost estimation

model calibration and proposes the special method

of calibration of COCOMO model via reduction of

the main equation of the model.

The mathematical model

In this method, a number of ideas are taken

from the relevance of features that were discussed

in [1], and the evaluation criteria for prediction

models in [2], [3] and [4]. This method aims to

find the optimal feature subset that enables higher

accuracy and lower variability of results than the

general model with the full feature set. Therefore it

is important to build the mathematical model and

define corresponding terminology. For example,

the relevance of features is defined to show

whether the feature subset is relevant to the model

or not. The optimal feature subset not always

includes all relevant feature subsets but generally it

shouldn’t include the irrelevant feature subset.

𝑃𝑀 = 𝑎 ∗ 𝐾𝑆𝐿𝑂𝐶𝑏 ∗ (𝐸𝑀𝑗) (Eq. 1)

where

PM – person months;

EM – effort Multipliers shown in Table2.4;

KSLOC – size as thousand lines of code, is

estimated or converted from a function point met-

ric;

a and b – domain-specific parame-

ters/constants.

𝑃𝑀 = 𝐴 ∗ 𝐾𝑆𝐿𝑂𝐶𝐵+1.01∗ 𝑆𝐹𝑖
5
𝑖=1 ∗

(𝐸𝑀𝑗
17
𝑗=1) (Eq. 2)

where

A – baseline multiplicative constant;

B – baseline exponential constant;

Size – Size of the software project measured in

terms of KSLOC (thousand of source lines of

code) or function points related to programming

language;

SF – scale factor;

EM – effort multiplier;

Definition 1. Model. These models are the

same as the ordinary COCOMO 81 model shown

in Equation 1 or the COCOMO II model shown in

equation 2 except that it uses fewer model

parameters (calibration features, e.g. effort

multipliers).

Definition 2. Feature. A feature, sometimes

called a parameter, an attribute, a factor, or a cost

driver, describes some characteristics of a project

instance.

Definition 3. Feature Subset. A feature subset

includes one or more than one but not all

parameters of the model.

ІНЖЕНЕРІЯ ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ

№4(8) 2011

© Баценко Д.В., 2011 6

Definition 4. Full Feature Set. A full feature

set includes all parameters of the model.

Definition 5. Accuracy. COCOMO’s

performance is often measured in terms of

PRED(30). PRED(N) is calculated from the

relative error, or RE (shown in equation 3), which

is the relative size of the difference between the

actual and estimated value. Given a data set of size

D, a Training set of size (Train=|Train|) ≤ D, and a

test set of size T=D- |Train|, then the mean

magnitude of the relative error, or MMRE (the

mean magnitude of relative error, shown in

equation 5), is the percentage of the absolute

values of the relative errors, or MRE (the

magnitude of relative error shown in equation 4),

averaged over the T items in the test set. PRED(N)

for each hold-out experiment is calculated with

equation 6.

𝑅𝐸𝑖 =
𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 𝑖−𝑎𝑐𝑡𝑢𝑎𝑙 𝑖

𝑎𝑐𝑡𝑢𝑎𝑙 𝑖
 (Eq. 3)

𝑀𝑅𝐸𝑖 = 𝑎𝑏𝑐(𝑅𝐸𝑖) (Eq. 4)

𝑀𝑀𝑅𝐸 =
100

𝑇
 𝑀𝑅𝐸𝑖
𝑇
𝑖=1 (Eq. 5)

𝑃𝑅𝐸𝐷(𝑁)ℎ =
100

𝑇

1 𝑖𝑓 𝑀𝑅𝐸𝑖 ≤
𝑁

100

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 𝑇
𝑖=1 (Eq.

6)

In this approach, Hold-out experiments are

conducted; the accuracy of the model is defined in

equation 7 as the mean of PRED(N) in all hold-out

experiments in the same calibration dataset:

𝑃𝑅𝐸𝐷 𝑁 =
1

𝑛
 𝑃𝑅𝐸𝐷(𝑁)ℎ

𝑖𝑛
𝑖=1 (Eq. 7)

Figure 1. An Example for PRED(30)=50

An example is shown in Figure 1, a

PRED(30)=50% means that half the estimates are

within 30% of the actual results. The results are

reported in terms of PRED(N), not MMRE. This is

a pragmatic decision as PRED(N) is easier

understood by business users than MMRE. Also,

there are more PRED(N) in reports in the literature

than MMRE, possibly due to the influence of the

COCOMO researchers who reported their 1999

study using PRED(N) [5].

Definition 6. Variability. PRED(N) is

calculated for different ―holdout‖ samplings of the

calibration data. Holdout samplings use

randomized subsamples of the data to calibrate

PRED value and the unsampled data to calculate

PRED value. Different samplings produce different

PRED(N) values. Μ shown in equation 8 is

denoted as the mean of PRED(N) from all hold-out

experiments. Variability of the estimation in the

model, denoted as V in equation 9, shows how

much spread is in the estimation. Standard

deviation σ in Equation 10 is used to measure the

variability of the accuracy of the model in this

approach:

𝜇 𝑥 =
1

𝑁
 𝑥𝑖
𝑁
𝑖=1 (Eq. 8)

𝜇 𝑥 =
1

𝑁
 𝑥𝑖
𝑁
𝑖=1 (Eq. 9)

𝜎 = 𝑉 (Eq. 10)

A smaller σ provides more ―confidence‖ in

using PRED(N)=μ than larger σ since all the

values are closer to μ . Small σ indicates small

variability in estimations while large σ indicates

large variability in estimation.

Definition 7. Better feature subset. Given an

learner L, a training dataset and a test dataset with

the feature subsets X1 , X 2 , ..., Xn , a better feature

subset, Xbet, is the feature subset X
i
 that provides

higher accuracy without increasing variability than

those of the full feature set X of the general the

model:

Accuracy(X
i
) > Accuracy(X) і Variability(X

i

)<Variability(X)

For any 1≤ j ≤ n (Eq. 12)

Definition 8. The best accuracy feature subset.

Given a learner L, a training dataset and a test set

with the better feature subsets X
1
bet, X

2
bet , ..., X

n
bet ,

the best accuracy feature subset, Xacc, is the better

subset X
i
bet that maximizes the accuracy among the

better feature subsets:

For any

1≤ j ≤ n (Eq. 13)

Definition 9. The least variability feature

subset. Given a learner L, a training dataset and a

test set with the better feature subsets X
1
bet, X

2
bet ,

..., X
n
bet , the least variability feature subset, Xsd, is

the better subset X
i
bet that minimizes the SD

(standard deviation) among the better feature

subsets:

For any 1≤ j ≤ n (Eq. 14)

Definition 10. The optimal feature subset.

Given a learner L, a training dataset and a test set

ІНЖЕНЕРІЯ ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ

№4(8) 2011

© Баценко Д.В., 2011 7

with the better feature subsets X
1

bet, X
2
bet , ..., X

n
bet ,

an optimal feature subset, Xopt, is the better subset

X
i
bet that maximizes the accuracy among the better

feature subsets:

For any 1≤ j ≤ n (Eq. 15)

Definition 11. The relevance of a feature. If

adding a feature Xi into any feature subset that does

not include Xi , or removing Xi from any feature

subset that includes Xi will change the accuracy of

the model, the feature Xi is strongly relevant to the

model. If a feature Xi is not strongly relevant and

there exists such a feature subset, adding Xi into

the feature subset that does not include Xi or

removing Xi from the feature subset that

includes Xi will change the accuracy of the

model, the feature Xi is weakly relevant to the

model. If a feature Xi is strongly relevant or weakly

relevant, Xi is relevant to the model. If a feature Xi

is neither strongly relevant nor weakly relevant, Xi

is irrelevant to the model. This approach apply the

Wrapper – feature subset selection implementation

method with k-fold cross validation to evaluate the

features of the model and N is the number of how

many times a feature Xi is selected in the k-fold

cross validation experiments:
1) Xi is strongly relevant if and only if N = k

(such as Size);

2) Xi is weakly relevant if 1≤ N < k ;

3) Xi is relevant if 1≤ N ≤ k ;

4) Xi is irrelevant if and only if N = 0.

(Eq. 16)

Normally, removing the irrelevant features

results in improvement of the performance of the

model. The strong relevant features should always

be kept in the model and removing any strong

feature will degrade the performance of the model.

The next section will show how this model is

implemented with the machine learning methods

and statistical methods.

Methods Applied in the Approach. Machine

Learning is defined as the study of computer

algorithms that improves automatically through

experience [6]. Applications with machine learning

techniques learn when they change their behavior

in a way that makes them perform better in the

future [7]. A number of research applied machine

learning and statistical methods in software cost

estimation [8], [9], [10], [11], [5], [12], [13], [14],

and [15]. The most successful approach is [5],

which has been used to calibrate COCOMO II

from 1998. In this research approach shown in

Figure 2 for software cost estimation, machine

learning techniques are used to formulate the

process and build the model from the training data,

and statistical methods are used to test, validate

and evaluate the process and the model built by

machine learning on the test set.

Figure 2. The integration of different techniques and methods in the approach

ІНЖЕНЕРІЯ ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ

№4(8) 2011

© Баценко Д.В., 2011 8

Linearization

Ordinary least squares regression and M5

model tree are linear models. It is known that in

case when linear model is applied to a non-linear

relationship, the performance of the model will be

decreased. COCOMO 81 shown in Equation 17

and COCOMO II shown in Equation 18 are

exponential models, with the assumption that the

changes of effort valu grow faster than the changes

of size value. The logarithmic transformation were

used to transform COCOMO 81 and COCOMO II

into linear models.

Linearized COCOMO 81 model:

𝑙𝑛 𝑃𝑀 = 𝛽0 + 𝛽1 ∗ ln 𝑆𝑖𝑧𝑒 + 𝛽2 ∗
ln 𝐸𝑀2 + ⋯+ 𝛽16 ∗ ln(𝐸𝑀16)
(Eq.17)

Linearized COCOMO II model:

𝑙𝑛 𝑃𝑀 = 𝛽0 + 𝛽1 ∗ ln 𝑆𝑖𝑧𝑒 + 𝛽2 ∗ 0.01 ∗
𝑆𝐹1 ∗ ln 𝐸𝑀2 + ⋯+ 𝛽6 ∗ 0.01 ∗ 𝑆𝐹5 ∗
ln 𝑆𝑖𝑧𝑒 + 𝛽7 ∗ ln 𝐸𝑀1 + ⋯+ 𝛽23 ∗ ln(𝐸𝑀17)
 (Eq. 18)

All these transformations create a new

parameters that are full mathematical equivalents

to the original parameters, but are expressed in

different measurement.

Clustering and Analyzing Project Features

In this approach, the most promising features

in a given dataset are identified with learning

algorithm - FSS (Feature subset selection). As the

data sets may contain several extraneous features

which can reduce the efficiency of the model, this

approach helps us identify the important attributes

and remove redundant ones.

If only the most relevant features were to be

selected and given to the learning algorithm they

can produce smaller models. This enhances the

understanding of the dataset or domain under

consideration. Dimensionality reduction also

speeds up the learning process.

In this study, the WRAPPER FSS method is

applied, which is a FSS method evaluating

parameter sets by using a learning scheme and

statistical re-sampling technique such as cross

validation to estimate the accuracy of the learning

scheme for a set of attributes, and implemented in

WEKA [7] (which is a data mining toolkit, free,

open source, well documented, compatible on

many platforms, and easy to install). When using

WRAPPER, a target learner is augmented with a

preprocessor that used a heuristic forward select

search to grow subsets of the available features. At

each step in the growth, the target learner is called

to determine the performance of the model learned

from the current subset. Subset growth is stopped

when the growth is stale; i.e. after a MAX STALE

number of times, adding attributes has not

improved the performance.

For example, suppose the set of attributes were

{A,B,C,D,E,F,...,Z} and MAX STALE was 2.

WRAPPER starts by selecting one attribute at

random (e.g. C) and score its performance.

Selected = {C} Score = 30 Stale = 0

Next, another randomly selected attribute (e.g.

B) is added and scored:

Selected = {C,B} Score = 50 Stale = 0

Note that the addition of B is not a stale

addition since it improves the score.

However, the addition of the next randomly

selected attribute (e.g. E) does not improve the

score, thus is stale increments:

Selected = {C,B,E} Score = 40 Stale = 1

Similarly, adding D also fails to improve the

score beyond just using {C,B} thus is scale

increments again.

Selected = {C,B,E,D} Score = 42 Stale = 2

Since MAX STALE has been reached,

WRAPPER would remove from the selected set all

the attributes implicated in the stale growth

({E,D}). The search would then continue, using

other attributes.

Figure 3 shows Wrapper is applied in RPM

approach. First, the data is divided into 10 equal-

size subset randomly. For each time, one leave-

one-out data is used. The feature list - FL is the

input of the best first search. In the first round, the

search sends each feature in the feature list to the

target learner, then the target learner learn the

model with that feature plus the features from the

selected list - SL, and the evaluation function is

applied. After the first round, the search adds the

feature that makes the model perform best into the

selected list and remove it from the feature list.

Then it checks whether it should stop or not. Then

the following is the second round, the third round

… and so on.

In RPM, minimizing the root mean-square

error (RMSE) is used as the evaluation function.

The ―Stop criteria‖ is that if the RMSE is increased

each time in the last 5 expansions, the search stops.

If it does reach the stop criteria, it output the

selected feature subset that yields the best

performance in the model.

There are 10 leave-one-out data, so 10 selected

feature subsets are obtained.

Then RPM uses how often the feature is

selected as its ranking. Note that, SIZE is always

selected and it gets the highest ranking.

The core technology used in this study is

FSS (feature subset selection) and FSS is an

efficient heuristic search through subsets of the

available attributes. The goal of this search is

ІНЖЕНЕРІЯ ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ

№4(8) 2011

© Баценко Д.В., 2011 9

to find a subset that gives similar, if not

superior, performance than using all the

 attributes. Equation 1 demonstrates how large

that space can be.

PL – Parameter List

Best First Forwarding Search

Each Parameter in PL

Target Learner

Model Evaluation Function

Stop?

Selected Parameter List

1

2

3

4

5

6

7

8

9

10

Yes

No

SL – Selected
 List

10-fold cross validationLe
ve

l-o
n

e
-fo

ld
-o

u
t d

ata
1

0
-fo

ld
d

ata

Figure 3. The Wrapper in RPM

There are 15 parameters except for SIZE (total

16 parameters in COCOMO 81). An exhaustive

search through all possible subsets would have to

explore the 32768 sets as shown in Equation 19. It

is assumed that only 6 most promising feature

subsets are identified with the method, and 20

seconds are needed for each hold-out experiment

(training set and test set are separated) for each

PRED of PRED(25, 30) on 60 project instances in

that domain, the number of total seconds as shown

in equation 20, indicates that 1.25 years are needed

to build the model shown in equation 21.

𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑆𝑢𝑏𝑠𝑒𝑡 = 𝐶15
𝑖 = 3276815

𝑖=1 (Equation 19)

𝐻𝑜𝑙𝑑𝑜𝑢𝑡 = 0.5 ∗ 30 ∗ 32768 ∗ 2 = 983040
 (Eq. 20)

𝐷𝑎𝑦 = 983040 60 60 24 = 11.38
 (Eq. 21)

𝑆𝑒𝑐𝑜𝑛𝑑𝑠 = 0.5 ∗ 30 ∗ 6 ∗ 2 = 18 (Eq. 22)

Fortunately, this study did not take 11.38 days.

The FSS methods used in this research is so

efficient that these experiments required only the

180 seconds as shown in Eq. 22.

One of the major advantages of the

WRAPPER approach is that, if some target learner

is already implemented, then the WRAPPER is

simple to implement. Also, in their comparative

evaluation of feature subset selection techniques

[16], Hall and Holmes conclude that WRAPPER is

the best FSS mechanism, if the data set is not too

large. At each step in the heuristic search,

WRAPPER makes another call to the target

learner. Hence, it may be too slow for large data

sets. The data sets used in this study are small

(maximum size: 200 instances) and hence are

amenable for WRAPPER.

ІНЖЕНЕРІЯ ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ

№4(8) 2011

© Баценко Д.В., 2011 10

Table 1

Wrapper Results for the COCOMO 81 Data

COCOMO 81 data with LSR Approach: 63 Instances

Parame-

ter
60 Folds 50

Folds

40

Folds

30

Folds

20

Folds
10 Folds

VEXP 100 100 100 100 100 100

LEXP 100 98 100 100 100 100

TIME 95 98 93 100 100 100

LOC 100 100 100 100 100 100

RELY 93 98 93 100 100 90

PCAP 72 82 73 63 70 60

AEXP 82 76 68 73 70 50

TURN 80 86 78 63 75 50

ACAP 47 48 50 50 55 50

SCED 75 80 73 53 75 40

DATA 15 12 18 13 10 30

STOR 15 12 18 13 10 30

MODP 18 24 25 20 20 20

CPLX 15 12 25 23 20 20

VIRT 12 8 18 13 10 10

TOOL 13 6 8 3 25 0

Table 2

Wrapper Results for the NASA 60 Project Data

NASA 60 data with LSR Approach: 60 Instances

 Parame-

ter

60

Folds

50

Folds

40

Folds

30

Folds

20

Folds
10 Folds

TURN 100 98 100 100 100 100

ACAP 100 100 100 97 100 100

TIME 100 100 100 100 100 100

LOC 100 100 100 100 100 100

STOR 95 92 93 87 90 80

VEXP 60 60 65 67 70 70

DATA 23 14 20 20 20 40

AEXP 8 2 5 3 0 20
PCAP 5 10 5 7 0 10

MODP 0 14 3 3 5 10

VIRT 0 0 8 3 20 10

RELY 3 2 5 7 0 0

TOOL 0 0 0 3 10 0

CPLX 3 10 5 7 5 0

LEXP 2 10 0 0 5 0

SCED 5 4 3 3 0 0

Wrapper uses k-fold cross validation in

Wrapper. It is applied with LSR approach on

COCOMO 81 and NASA 60 project data from 10

folds to 60 folds to chose the right number of folds

needed. As shown in Table 2 and 3.2, there is no

evidence that conducting more than 10-way cross

ІНЖЕНЕРІЯ ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ

№4(8) 2011

© Баценко Д.В., 2011 11

values alters the conclusions that could be found in

a 10-fold. A similar pattern was observed by

Wrapper with another approach M5 model

tree. There is another interesting result:

COCOMO81 data are much more diverse than

NASA data as the significance of different

parameters in COCOMO 81 are more effective

than those in NASA. The parameters are more

correlated in the projects that could have similar

nature from an organization than in those projects

crossing different organizations. Removing such

correlated features will increase the performance of

the model.

Best First forward selection Search Used in

Wrapper

Best first forward selection search is an AI

search strategy and more robust than hill-climbing.

Best first forward selection search will select the

most promising feature, which mostly improves

the accuracy of the model from the features

generated so far and not expanded. If the path

being explored begins to appear less promising, it

can back-track to a more promising previous

subset and continue the search from there. To

avoid searching the entire search space, the

following stop criterion for best first forward

selection search is used: if it can not find a feature

that improve the estimation accuracy of the model

in the last n expansions, it will stop and return the

best solution so far (n in these experiments is set to

5 as it is the default value in WEKA [7]).

Ordinary Least Squares Regression

Ordinary Least Squares regression (LSR)

method is the classical statistical approach of

general linear regression modeling using least

squares. It has been widely known and discussed

extensively. LSR is the statistical procedure to

estimate the linear relationship between the

dependent variable Y (the prediction of the model)

and the independent variables 1 X , .., i X , .. n X

(the parameters of the model). LSR minimizes

squared error with equation 23. I β is calculated

with mathematical matrix algorithms with equation

24.

𝒀𝒊 = 𝜷𝟎 + 𝜷𝟏𝑿𝟏𝒊 + 𝜷𝟐𝑿𝟐𝒊 + ⋯+ 𝜷𝒌𝑿𝒌𝒊 + 𝜺𝒊

NASA effort data used in this study are

available on-line at the PROMOSE repository of

public domain software engineering data set:

http://promise.site.uottawa.ca/SERepository/datase

ts/cocomonasa.arff. For example, if LSR is applied

LSR into COCOMO 81 linear model with the

NASA 60 projects without eliminating the co-

linear parameters and selecting attribute method,

here is the linear regression model with 10-fold

cross-validation:

ACT_EFFORT =

-1.1554 * AEXP +

2.7992 * DATA +

-0.1527 * PCAP +

-6.2363 * VEXP +

-1.5573 * MODP +

-1.1246 * RELY +

0.1986 * TOOL +

1.1126 * TURN +

0.8644 * CPLX +

2.4129 * LEXP +

1.3613 * SCED +

-0.6794 * VIRT +

3.2141 * ACAP +

77

-0.745 * STOR +

2.8783 * TIME +

1.0712 * LOC +

1.3462

Correlation coefficient is 0.9825. Mean

absolute error is 0.1896. Root mean squared error

is 0.2579. Relative absolute error is 16.0925 %.

Root relative squared error is 18.3653 %. The

accuracy for this linear regression model of

COCOMO 81 are PRED(25)=70 and

PRED(30)=75.

Summary

Presented mathematical model for the calibra-

tion of COCOMO model via reduction of it’s main

equation increases the accuracy of the model for

specific company domain, but decreseas the accu-

racy of the model for the generalized case. The

accuracy of calibration depends on the amount of

historical data in the company that is used to cali-

brate the model. Some variation in calibrated

model results may appear if the company changes

the specifics of the software projects being devel-

oped. This may require recalibration of the model

to accont for new specifics, or otherwise accuracy

may be even worse than for the generalized CO-

COMO model.

References

1. R. Kohavi, G. John, ―Feature Extraction,

Construction and Selection : A Data Mining Per-

spective‖, edited by H. Liu and H. Motoda.

2. Foss, T.; Stensrud, E.; Kitchenham, B.;

Myrtveit, I. "A Simulation Study of the Model

Evaluation Criterion MMRE", IEEE Transactions

on Software Engineering, 29(2003)11, pp. 985-995

3. M. Jørgensen, D. I. K. Sjøberg. "An effort

prediction interval approach based on the empirical

distribution of previous estimation accuracy",

ІНЖЕНЕРІЯ ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ

№4(8) 2011

© Баценко Д.В., 2011 12

Journal of Information and Software Technology,

45 (3), March 2003, pp. 123-136.

4. K. J. Molokken-Ostvold. "Effort and

Schedule Estimation of Software Development

Projects", PhD-thesis, 2004,

http://www.simula.no/photo/effort_and_schedule_

estimation_of_software_development_projects.pdf

5. S. Chulani, B. Boehm, B. Steece. ―Bayes-

ian analysis of empirical software engineering cost

models‖. IEEE Transactions on Software Engi-

neering, 25(4), July/August 1999.

6. T. Mitchell. ―Machine Learning‖, McGraw

Hill, ISBN 0070428077, 1997.

7. I. H. Witten, E. Frank, ―Data Mining: Prac-

tical Machine Learning Tools and Techniques with

Java Implementations‖. Morgan Kaufmann, 1999.

8. M. Shepperd and C. Schofield., ―Estimat-

ing Software Project Effort Using Analogies‖,

IEEE Transactions on Software Engineering, Nov

1997, Vol. 23, No. 12.

http://www.utdallas.edu/~rbanker/SE_XII.pdf

9. K. Srinivasan and D. Fisher. "Machine

learning approaches to estimating software devel-

opment effort", IEEE Trans. Soft. Eng., pages

126–137, February 1995.

10. G. Wittig, G. Finnie. "Estimating software

development effort with connectionist models",

Information and Software Technology,

39(7):469–476, 1997.

11. L. C. Briand, Kh. El Emam, D. Surmann, I.

Wieczorek. "An assessment and comparison of

common software cost estimation modeling tech-

niques", The 21st International Conference on

Software Engineering, May 1999.

12. C. Mair, G. Kadoda, M. Lefley. "An Inves-

tigation of Machine Learning Based Prediction

Systems", Journal of software systems, vol. 53, pp.

pp23-29, July 2000.

13. S. Bibi, I. Stamelos, L. Aggelis. "Bayesian

Belief Networks as a Software Productivity Esti-

mation Tool", 1st Balkan Conference in Informat-

ics, Thessaloniki, Greece, November 2003.

14. G. Boetticher. "When will it be done? the

300 billion dollar question, machine learner an-

swers", IEEE Intelligent Systems, June 2003.

15. T. Menzies, D. Port, Z. Chen, J. Hihn, S.

Stukes. "Validation Methods for Calibrating Soft-

ware Effort Models", ICSE 2005, May 15–21,

2005

16. M.A. Hall and G. Holmes. ―Benchmarking

attribute selection techniques for discrete class data

mining‖. IEEE Transactions On Knowledge And

Data Engineering, 15(6):1437– 1447, 2003.

Баценко Дмитро Володимирович - старший викладач кафедри інженерії про-

грамного забезпечення факультету комп'ютерних наук Національного авіаційного

університету.

Наукові інтереси: управління проектами, методи та моделі оцінки вартості розроб-

ки ПЗ, методології та технології розробки програмного забезпечення, тестування

програмного забезпечення, якість та управління якістю ПЗ, бази даних, життєвий

цикл ПЗ, програмне забезпечення роботів.

E-mail: dmytro.batsenko@gmail.com

 Стаття надійшла до редакції 12.10. 2011 р.

Після доопрацювання – 16. 11. 2011 р.

