[HDKEHEPIS] [IPOTPAMHOT'O 3ABE3ITEUEHHSI
Ne 4 (24) 2015

TEXHO.JIOT'TI PO3POBKH TA CYIIPOBOIKEHHS ITIPOTPAMHOT O
3ABE3IIEYEHHSA

UDC 004.683.01
Sidorova N.M.
National Aviation University

ONTOLOGY-
DRIVEN
PROGRAMMING
STYLE
ASSISTANT

Programming style is the set of guidelines, and
practices, applicable to a specific language, that are
used while writing the source code and which are
intended to introduce the universal look and feel of the
code, improve understandability of the code and assist
software engineers to not introduce more mistakes
while writing code. Programming styles are different
for different languages.

To develop the ontology, one must first perform the
extensive research on the topic, basically a domain
analysis on the problem, identify the main concepts of
programming styles, build a hierarchy of them and
define the relationship between the concepts and their
members.Ontology-driven programming style assistant
was developed with the help of Protégé. Ontology
reasoning is a process in any ontology development to
ensure that the ontology is of high-quality and does not
contain any contradictory relations.

For programming styles ontology was choice HermiTreasoner, because it proved to be one of the fastest, reliable and
widely used reasoners in the current state of things in the ontological domain.Protégé tool also automatically collects
metrics about the ontologies, which are mostly concerning the numbers of class axioms, object property axioms and
other important numbers.Ontology development using modern software tools is one of the key problems ontology
domain. It is important that the users are able to create ontologies with ease and operate with description logic
expressivity in the very clear and concise manner.

3acmocysanna cmunie NpoOSPaAMySaHHA NPU HANUCAHHI NPOSPAM 3apas, y 36'A3Ky 3 GUPIUEHHAM 3A60aHb
CYnposooy i NOBMOPHO2O BUKOPUCMAHHA NPOSPAMMHO20 3abe3neyenus, AK 1 pauiwe akmyanvro. Y cmammi
NPONOHYEMBCA THCMPYMEHM Ol ACUCHTYBAHHA NPOSPAMICIA 8 NPOYeCi KOHCMPYIOBAHHS NPOSPAMMHOZ0 3abe3neuenHs,
3ACHOBAHUIL HA NPeOCMAGIeHHT CIUTI0 NPOSPAMYBAHHA OHMONOZIEN0. [{a peanizayii iHCmpymMeHmy 6UKOPUCTNOBYEMbCA
Protégé. Posenanymo mexuiuni numanna opeatizayii onmonoeii. Bukonano 0ocniodicenns peanizo8anozo incmpymeHnmy
i noKasana 1o2o npaye30amHicmo.

Ilpumenenue cmunell nPopAMMUPOSAHUA NPU HANUCAHUU NPOSPAMM Celdac, 8 céA3u C peuileHuem 3a0ay
CONpOBONCOeHUA U NOBMOPHO2O UCNONb306AHUS NPOSPAMMHO20 0becnedenus, NO-npedicHemMy akmyanvho. B cmamoe
npeonazaemcs UHCMpYMeHm ONA ACCUCMUPOSAHUA NPOSPAMMUCING 8 npoyecce KOHCIMPYUPOBAHUA NPOSPAMMHOZ0
obecneuenus, OCHOBAHHBIL HA NPEOCNAGNIEHUU CMULL NPOSPAMMUPOSAHUA oHmonocuel. [na peanusayuu
uncmpymenma ucnoav3yemcs Protégé. Paccmompensi mexuuueckue — 60npocbl Op2aHU3Ayul OHMOJIOSUU.

Bbln()/lHeHoucczzedo6aHuepeaﬂu30ganyoeouycmpyMeHmaunOKa3aHaeeopa60mocnoco6H0cmb .

Keywords:softwareengineering,

Introduction

Programming style is the set of guidelines, and
practices, applicable to a specific language, that are
used while writing the source code and which are
intended to introduce the universal look and feel of
the code, improve understandability of the code
and assist software engineers to not introduce more
mistakes while writing code [1]. Programming
styles are different for different languages.

What works for one language may not work for
another due to the language specifics and the
corresponding code structure. Even within the same
language there can be a variety of different
programming styles used for different situations
and different programmer and differentsoftware
teams. For example, the particular project team
(Mozilla developers) may rely in their work on the
Java official programming style, but they do have

programming, programmingstyle,

ontology, Protégé, reasoner.
the list of concepts that is different from the official
guide and that is universally adopted within their
project and is fulfilled. This makes up for their own
programming style and it is no less correct one than
the official Java style guide.

During the evolution of the programming styles,
the following list of relevant concepts was formed:

white space, indentation, vertical alignment,
naming conventions, comments, portability,
meaningfulness, consistency, file structure,

complexity. Generally, programming style is
something that software engineers enjoy not to
address in order to save time and effort while
developing software applications, as it can be
challenging to follow the fruitful variety of boring
guidelines and it usually slows down their work
significantly.

10

[HDKEHEPIS] [IPOTPAMHOT'O 3ABE3ITEUEHHSI
Ne 4 (24) 2015

Yet, the years and years of the software
development have led the community to believe
that adhering to programming styles is a highly-
beneficial practice which allows to save a lot of
time and money, since software programs are
usually supported and used for quite a broad
periods of time [2]. The more impactful the
software project is, the more people involved in the
development are, the more programming styles are
coming in handy.

Ontology Design

To develop the ontology, one must first perform
the extensive research on the topic, basically a
domain analysis on the problem, identify the main
concepts of programming styles, build a hierarchy
of them and define the relationship between the
concepts and their members.

The research session has provided the basic
notions about the programming styles and the
variety of actual standards to work through [3,4].
This allowed to gather actual concepts that later
will be formed into the programming styles
ontology and to trace the connections between
these concepts. We proposed the list of
programming styles ontology high-level concepts
(is called ‘classes’) that is the following:
Programming Languages, Projects, Standards,
Style Rules.

Programming Languages

It is clear that the programming styles are
influenced by the languages. A lot of languages
have code conventions developed for them,
available in free access and ready for usage. The
search for programming style conventions allowed
composing a list of languages, which have official
or unofficial code conventions developed for them.

In terms of the ontology, the ‘Programming
Language’ is the class, while each specific
language is considered to be the member of the

‘Detaliled’subclass

N

‘Standards’ class

‘ ‘Not Detailed’ subclass
‘Web format’ subclass

class. For example, Action Script, Ada, C, C++,
C#, D, Dart, Erlang, Flex, Java, JavaScript, Lisp,
MATLAB, Mono, Object Pascal, Perl, PHP,
Python, Shell are the members at the class.All these
languages have the programming styles associated
with them.

Projects

Programming style guides are not limited to
languages exclusively.lIt is also easy to find open-
source standards for various software projects. In a
lot of cases, the standards for the projects are
heavily relying on some official language guides,
but there are cases when the project themselves are
setting the coding conventions that influence pretty
much everyone who are working with the
language. There is quite a big number of
programing styles and code conventions for the
projects as well.

In terms of ontology, ‘Projects’ are the ontology
class, while particular projects are treated like the
members of the class. The list of projects with
found standards that are being included in the
ontology is the following: Apache, Drupal, Zend,
GNU, Google, Linux, Modular, Liquid Web CMS,
Mozilla, Road Intranet, NetBSD, OpenBSD,
GNAT,ZeroMQ.

Standards

Next step of gathering the data for the ontology
was choosing the standards and getting familiar
with their structure and rules, so the domain
analysis could be finished.

The standards have different document
structures, they can be presented to the end user in
different forms and they can contain the different
level of detail within them. Such an analysis
resulted in the need to classify the standards further
and to introduce sub-classes into the ontology.The
final structure of the ‘Standards’ ontology class is
the following (Fig.1):

‘PDF format’ subclass

Fig. 1. The structure of the “Standards” ontology class

11

[HDKEHEPIS] [IPOTPAMHOT'O 3ABE3ITEUEHHSI
Ne 4 (24) 2015

The actual standards are bound to become the
members of the ‘Web format’ or ‘PDF format’
subclasses. It is important to note that the whole
point of the ontologies is about defining consistent
knowledge bases, so this requires to put a disjoint

restriction between the subclasses of the same
level while designing the ontology using ontology
editorthe example ofthe final choice for the
detailed ontology analysis is on the tab. 1.

Table 1
Detailed Analysis Standards
Standard Language Project
C# Coding Conventions (C# Programming Guide)
C# Brad Adams C# -
Philips Healthcare
Code Conventions for the Java Programming Language -
Mozilla Coding Style Guide ava Mozilla
Apache Developers' C Language Style Guide Apache
GNU Coding Standards ¢ GNU

The specific rules and guidelines that have
made it into the ontology for this work are taken
from the abovementioned standards [5].

Style Rules

The work with actual style guide rules is one
of the most important parts of the ontology
development, since it is necessary to analyze the
rules and draw connections between them. The
code conventions usually have the similar
structure and the rules themselves are concerning
the same topics. For example, [5], rule 3@101-use
us-English for naming identifiers. There are a lot
of cases where the same rule is described with the
help of different words and it is highly important
that for the ontology it is clear whether the rule is
unigue or is there the same rule within any other
standard. We are to classify the rules. This helps
to keep the consistency within the ontology
(which is one of its most important quality
characteristics) and make sure that there are no
synonymous members.

The important step is also to classify the
programming style rules into concepts, since there
is clearly a variety of different groups the rules.
The classification from Philips Healthcare
standard was taken into account for this ontology
[5], since it does provide the most comprehensive
level of logic and detail for the ontology concepts,
although it was modified a bit, as the standard
itself missed the file structure section. Majority of
other standards are using the same structure and
naming as well.

The final list of style rule types consists of 10
elements and is the following: General, Naming,
Comments, Object Lifecycle, Control Flow,
Object Oriented, Exceptions, Delegates & Events,
Data Type, Coding Style & File Structure.The
style rules themselves are further classified in
accordance with above mentioned style rule types
and serve as ontology members or objects within
the rule types in ‘Style Rule’ class.

The problem with style rules is such that the
descriptions of the rules usually require quite a
rich amount of sentences. It is clearly not possible
to use the description themselves because of it as
the names for the style rules. Also, it is extremely
hard to choose the short and meaningful name for
the rule without losing the sense of the rule itself
and without the risk of the rule sounding too
similar to the other or being redundant. This has
called for the need to adopt the numbering
convention to be able to properly describe the
style rules within the ontology.

The table 2 presents some examples of style
rules with regards to the numbering convention,
style rule types, their descriptions and connections
to standards, languages and projects.

These numbering conventions are further used
when the ontology is being developed in Protégé
editor, just as the connections between the rules
and other ontology elements are established as
well.

12

IHXXEHEPIA ITPOT'PAMHOI'O 3ABE3ITEUEHHA

Ne 4 (24) 2015
Table 2
Style Rules Examples
| Description | Standard | Language | Project
General
11 Do n_ot mi?< code f_rom different Philips C# -
' providers in one file
Naming
. L Philips C# —
2.1 Use US-English for naming identifiers GNU c GNU
Comments
3.1 | Each file shall contain a header block | Philips C# | -

Object Lifecycle

4.18 Av0|d_ assigning several variables to the same Apache c Apache
value in a single statement

Control Flow

51 Functions should be declared with ANSI-style | Philips C# -
arguments

Obiject Oriented

6.1 Do not use embedded assignments in an attempt to | Philips C# -
improve run-time performance.

Exceptions

7.14 Do not throw an exception from inside an C# Conv ci B
exception constructor

Delegates & Events

8.10 Each sqbscrlbe must have a corresponding C# Conv c# _
unsubscribe

Data Types

9.12 | Explicitly declare the types of all objects | C# Conv | Cc# E

Coding Style & File Structure

10.29 | Do not use spaces inside brackets | Adams | c# E

Ontology Model Using the relations, the model for the

Prior to developing the ontology using Protégé
editor, it is vital to establish the proper connections
between all the classes. In general, it is a popular
way to model the ontologies using basic UML
class diagram concepts, so this method was chosen
to present the ontology structure [6].

Knowledge Base

Classes and
Members

Structure
Tables

UML Ontology
Model

programming styles ontology was

developed(Fig.2). Note please, that it deals with
the level of ontology classes and their sub-classes,
without going down to the detail of the particular
class members

Ontology

Editor Ontology

Fig. 2. Programming Styles Ontology Model

13

[HDKEHEPIS] [IPOTPAMHOT'O 3ABE3ITEUEHHSI
Ne 4 (24) 2015

So, the ontology was presented in the way of
design tables, as well as in the form of UML
ontology model that shows the relations of classes
between each to other. The obtain information is
significant enough and is comprehensively
described, that allows to build the programming
styles ontology using the Protégé ontology editor.

Case study. Ontology Development Using
Protégé

Ontology-driven programming style assistant
was developed with the help of Protégé[7,8].

Protégé is an open-source knowledge
acquisition system, developed by Stanford
University. Protégé is considered to be the leading
ontology engineering tool. It provides the means of
visual ontology modeling. Users can interact with
the help of the interface to create classes, add
members, create and assign properties between

ontology concepts. Protégé also allows generating
Java code from the ontology models and supports a
number of languages and ontology representations,
such as RDF, OWL, XML and so on.

Just as Protégé allows creating ontologies and
editing them, it also provides the unique
opportunities to actually present ontologies in a
very user-friendly form. Description logic ontology
form is great for ontology logic purposes, but it is
hard to read and navigate through [9]. The UML
ontology form mostly presents the model of the
ontology, but it certainly lacks any Description
logic expressivity and in general is lacking details.
Protégé capabilities allow presenting ontologies no
worse than a PDF document of web page can. This
is vital when programmer needs to work with the
programming styles ontology as the knowledge
base for his coding needs.The scheme on fig.3
present the logic of ontology development.

Domain Drawing Building a Legend: Process Stens
Analysis Connections Model P
Y Y Y
Classes & Structure UML Ontology Outcomes
Members Tables Mode
Fig. 3. Ontology creation process scheme
While creating the ontology in Protégé, there - annotations help presenting any

are several the following ground rules:

- classes are sets or collections of objects;

- members or individuals are the instances of
the classes — basic components of the ontology;

- restrictions or assertions help define
relations between classes and between members;

- it is impossible for a class to be directly
related to any other class member;this interaction
happens solely on the level of class members;

- object properties are used to set restrictions
or assertions;

[[Class hierarchy |[Glass hierarchy (infemed)

information about ontology the user needs, usually
it is used to handle descriptions, comments or even
some examples for the ontologies.

Protégé also automatically collects metrics,
which will be presented later.

Creating the ontology consists of any steps.

The first step of creating the ontology is
defining its classes. Fig. 4 presents the
programming style ontology classes in the view of
their defined hierarchy.

(%3] =]

@ owl:Thing

Programming_ Languages
Projects
Standards
© Detailed
Lo Detailed_PDF
Detailed_wWeb
~ @ NotDetailed
: NotDetailed_PDF
L MNotDetailed__Web
¥ Style_Rules

Comments
Control_Flow
Data_Types
Delegates_And__Events
Exceptions

General

MNaming

Object_ Lifecycle
Object_ Oriented

Coding_Style__and_ File_Structure

Fig.4. Programming styles ontology classes hierarchy

14

[HDKEHEPIS] [IPOTPAMHOT'O 3ABE3ITEUEHHSI
Ne 4 (24) 2015

The ontology contains classes and sub-classes
as well. There is no restriction as for the class
nesting, as long as there are no contradictions or
inconsistencies caused by this.The specific class
objects are stored at the level of class members. It

members in this programming styles ontology —
members usually follow on the lowest level of
detail. The screenshot is also presenting the
members view from so-called ‘Classes’ view in
the editor (Fig.5).

is worth noting that not all classes contain

Annotation Properties r Individuals r OWLViz r DL Query r OntoGraf r SPARQL Query r Ontology Differences |

Active Ontology r Entities r Classes Object Properties r Data Properties
[Class hiesarchy || Glass hierarchy (infened) | Annotstions | Usage
Aonatations 1=
¥-- @ owl:Thing

~- . Programming_Languages
- @ Projects

V- @ Standards

- @ Detailed

- Detailed_PDF

- Detailed_Web
NotDetailed =
- ¥ NotDetailed_PDF
- ¥ NotDetailed_Web
v tyle_Rules

-~ Coding_Style_and_File_Structure General class axioms —
- Comments

- Control_Flow

- Data_Types

- Delegates_And_Events
- Exceptions Members

) ﬁene_ral ® Action_Script
= aming

- Object_Lifecycle ® Ada

- @ Object_Oriented # Angular]s —
*cC

#® CPlusPlus
CSharp

SubClass Of (Anonymous Ancestor)

#cCss
4D
#Dart

#®Erlang

Fig.5. ‘Class’ ontology view with members

Class view within Protégé ontology editor
deals with all kinds of properties and relations,
connected in particular to the class view. The
editor holds a great variety of different interaction
options for ontology classes. The structure of
options is the same for each ontology class,
whereas user himself defines and adds the needed
options which are logical for this particular class.
Protégé ontology editor is not bounded by class
view only. There are a lot of the cases where it is
much easier to work with members view, and the
tool presents it with the same easy and intuitive
user interface. To work with members, ontology
editor needs to use the ‘Individuals’ menu, which
allows seeing the list of members and their
specific properties but still not losing the
connection with the classes.

There is an important point to note about
members of any subclass of class ‘Style Rules’. It
was mentioned before that introduced numbering
was the only way of somehow maintaining the
structure of the ontology and do not overload it
with long and potentially non-meaningful or
redundant member names. Protégé as an
instrument contains the powerful feature called
‘Annotations’ that allows using ‘comment’

property, where ontology editor can store any
information about the member or the class. This
functionality was successfully utilized when
describing various style rules (Fig.6).

The final view of style rules concepts in
ontology editor is such that the name of the
member consists of ‘<Style Rule><chosen
designation number>’.

The important point not to miss while
developing the ontology is also the examples of
code usage, in case that is actually present within
the standard. Since the goal of the programming
styles ontology is to allow programmers to easily
navigate through it and facilitate learning, it is a
vital point to contain some examples. Protégé
ontology editor contains the functionality to
include the examples. Just as ontology should
resemble the knowledge base structure and
relations between its elements, it should also be
informative enough to allow easy learning process
for any user.

Protégé also allows creating user-defined
properties and does not restrict editor with the list
of available properties. It also separates user-
defined properties from default ones using bold

15

[HDKEHEPIS] [IPOTPAMHOT'O 3ABE3ITEUEHHSI
Ne 4 (24) 2015

font. This allowed introducing the special, editor-

rAnnGtati{}ns rLPsa,ge |

custom ‘example’ property.

Annotations: Naming_2.11

Annotations

rdfs:comment [type: xsd:string)

example [type: xsdstring)

Example:

Instead, use: void Write {double value);

Mame an identifier according to its meaning and not its type

Avoid using language specific terminalogy in names of identifiers.

Do not use a definition like: void Write(double doubleValue);

[»

il

Fig. 6. Comment and example for ‘Naming’ class member

Certain properties are related to the classes and
certain ones are related to members of these
classes and establish the connection between
them. It is important that these object properties
are basically an analog of description logic
expressivity within the Protégé tool [9]. Instead of
writing the description logic queries, user can
easily see all the needed axioms in the form that is

merciful to a human mind and easily
understandable. It is important that subclasses are
inheriting the object properties relations from their
parent classes or ancestors, which means that
there is no class in this ontology without the
relations. The tab.3 presents example of the object
properties for classes and members defined for the
domain of programming styles.

Table 3
Obiject Properties for Classes

Class Property

Programming Languages

containStyleRules some Style_Rules
useStandards some Standards

Another powerful feature of Protégé tool is the
so-called ‘usage’ view, which allows displaying
instantly where the particular member or class are
actually used within the ontology (Fig.7). The
‘usage’ menu captures all kinds of connections
between elements and presents them in a user-
friendly form, also allowing a bit of sorting for
distinguishing between different usage types. It
also automatically calculates the number of
occurrences of the particular class within any type
of relation.

Ontology Reasoning

Ontology reasoning is a process in any
ontology development to ensure that the ontology
is of high-quality and does not contain any
contradictory relations.

The Protégé tool supports a rich variety of
different ontology reasoners as plug-ins, ready to
download directly using the tool. Once installed,
any ontology opened in Protégé can be reasoned.

For programming styles ontology was choice
HermiTreasoner, because it proved to be one of

the fastest, reliable and widely used reasoners in
the current state of things in the ontological
domain [10].

In general, a HermiTreasoner is capable of
performing such checks as:

- determine whether a description of the
concept is not contradictory;

- determine whether members in ABox do
not violate descriptions and axioms described by
TBox;

- check whether the member is an instance
of a class;

- find all members that are instances of a
class;

- find all concepts which the member
belongs to.

To invoke the reasoner using Protégé, one
should go to ‘Reasoner’ menu, choose the needed
reasoner in the list of available ones and click
button ‘Start reasoner’.

16

[HDKEHEPIS] [IPOTPAMHOT'O 3ABE3ITEUEHHSI
Ne 4 (24) 2015

Annctations Usage

Usage: Coding_Style and_File_Structure_10.1

Show: [this[w| different

Found 4 uses of Coding_Style_and_File_Structure_10.1
- @ Coding_Style_and_File_Structure_10.1
: o Coding_Style_and_File_Structure_10.1
& Coding_Style_and_File_Structure_10.1 Type Coding_Style_and_File_Structure
Coding_5tyle_and_File_Structure_10.1 relatedTolLanguage CSharp

#® Coding_Style_and_File_Structure_10.1 relatedToStandard CSharp_Philips_Healthcare

Fig. 7. Example of ‘usage’ view for the ontology member

Because all ‘Style Rules’ subclasses are later reasoner catches the illogical expression and
set to be disjoint with each other to make that immediately renders the obtained ontology as the
there are no duplicates within the classes, the inconsistent one (Fig.8).

[Class hiesarchy | Class hierarchy {infered) |
%8| | =
v-- @ Thing

----- @ Programming_Languages

----- @ Projects

¥ @ standards

----- ® Detailed

----- @ NotDetailed

----- ® PDF_Format

----- ® Web_Format

¥-- 0 Style_Rules

----- ® Coding_Style_and_File_Structure
----- @ Comments

----- © Control_Flow

----- @ Data_Types

----- © Delegates_And_Events

----- © Exceptions

----- ® General

----- @ Naming

----- @ Object_ Lifecycle

----- @ Object_Oriented

Fig. 8. Inconsistent ontology class hierarchy

Protégé ontology editor also provides the error logs all issues that occur while tool is being run
messages in case the ontology is inconsistent, as it (Fig.9).

Reazoner active but the ontology is inconsistent show Inferences

Class hierarchy (inferred): MEAm

An error occurred whilst creating the view
InconsistentOntologyException:
Inconzistent ontology

Fig. 9. Error in inferred ontology

17

IHXXEHEPIA ITPOT'PAMHOI'O 3ABE3ITEUEHHA

Ne 4 (24) 2015

An important point about reasoners is that it
also allows drawing connections between objects
in case there is a sufficient description logic basis
for it. Such a case was uncovered while working
with the programming styles ontology as
well.While the ontology should be consistent and
ideally there should be no synonyms, there are
certain cases where elements can be similar in

Metrics

Axiom

Logical axiom count
Class count

Object property count
Data property count
Individual count

DL expressivity

Class axioms

SubClas=s0f axioms count
EquivalentClazses axioms count
DigjointClasszes axioms count
GCl count

Hidden GCl Count

Individual axioms
ClassAssertion axioms count
ObjectPropertyAssertion axioms count

DataPropertyAssertion axioms count

NegativeObjectPropertyAs=ertion axioms count

MegativeDataPropertyAssertion axioms count

Samelindividual axioms count

Differentindividuals axioms count

Annotation axioms

AnnotationAssertion axioms count
AnnotationPropertyDomain axiems count

AnnotationPropertyRange0f axioms count

Conlusions

Ontology development using modern software
tools is one of the key problems ontology domain.
It is important that the users are able to create
ontologies with ease and operate with description
logic expressivity in the very clear and concise
manner.

Another important notion is making sure that
the ontology is consistent, does not contain any
contradictory notions and hence is high-quality

their nature, but still be different objects in terms
of the ontology.

Protégé tool also automatically collects metrics
about the ontologies, which are mostly concerning
the numbers of class axioms, object property
axioms and other important numbers.

The programming style ontology metrics
summary can be found in tab. 4.

Table 4
Programming Style Ontology Metrics

1878
1223
20

3

0

344
ALCHO

(=T — T

344
238

[=

283

and useful for the community. Ontology
reasoners, usually in the form of plug-ins for the
ontology editors are helping precisely with that.
Ontology development itself is more fruitful in
case the editor is familiar with general principles
of reasoning and is able to eliminate most of the
ontology inconsistencies by keeping in mind how
description logic and reasoning themselves are
functioning.

18

IHXXEHEPIA ITPOT'PAMHOI'O 3ABE3ITEUEHHA

Ne 4 (24) 2015

As the result of ontology development and
reasoning, the consistent programming styles
ontology was developed, containing a substantial
amount of concepts, members and having the
meaningful connections drawn and verified via
the help of HermiTreasoner using the Protégé
ontology editor tool [3, 5]. Even more
importantly, the developed ontology contains the
capabilities to use it as the tool to learn
programming styles, as it supports the description
of a programming style using annotations, that
allows it to contain the code snippets examples,
connected to the rules.

References

1. Sidorov N.A. Software stylistics [Tekcr]
/Sidorov N.A./l Proc. of the National Aviation
University, 2005. — Ne2. — C.98-103.

2. Railich V., Wilde N. et. al. Software
cultures and evolution Computer. — 2001, Sept. —
P.25-28.

3. Sidorova N. N. Programming styles
taxonomy [rekcr] /Sidorova N. N.// Hayk.
xypHan "KoMm’roTepHO-iHTerpoBaHi TEXHOJOTII:
ocBiTa, Hayka, BUPOOHHMITBO" — JIyIbK.:
JlyupkuifHaI[iOHAILHUHTEXHIYHUITYHIBepcHuTe, Ne
19.- 2015.—- C. 79-85.

4. Sidorova N. Ontology-Driven Method
Using Programming Styles [rekct]/ Sidorova N./

Information about author:

engineering, education.

E-mail: nika.sidorova@livenau.net

— “ImxeHepiss mporpaMMHOro 3abe3nedeHHs”. -
2015. — Ne 2 (22). —C. 19— 28.

5. C# Coding Standard, Version 2.0, Philips
Healthcare, 2009.— 57p.

6. Grants E.S. Roadmap to a DO-178C
Formal Model- Based software Engineering
Methodology.Proc. of the Intern. Multiconf. Of
Eng.Comp. Sci. — V.1, IMECS. —March.— 2015. —
6p.

7. Sidorov N., Sidorova N. Programming
style ontology-driven tools.[tekct]/ Sidorova N.,
Sidorova N. //Programmable logic integrated
circuits and microprocessorteehnignein education
and manufacturing. -abstr. of the Intern. Scient.
and Pract. Workshop Young Scientists and
students. —JTyupk. — 28-29.04.2016. — P.100-101.

8. The description logic handbook Theory,
implementation, and applications, Ed. by F.
Baader, Cambridge University Press. — 2003. —
320 p.

9. SidorovaN.M.Theprogrammingstyleontol
ogyassistant. - Tesu momoBimeii MixHapoAHOT
HAYKOBO-TIPAKTHYHOI KOH()EpeHIii achipaHTiB i
cryzaentis. —Kuis. — 2016.—P. 16.

10. S. Abburu,
“ASurveyonOntologyReasonersandComparison”,
InternationalJournalofComputer Applications
(0975 — 8887), Volume 57— No.17, November
2012.

Sidorova Nika Mykolaivha — postgraduate student of Software Engineering
Department of the National Aviation University. Scientific interests: software

19

