
ІНЖЕНЕРІЯ ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ 
№ 4 (24) 2015 

 

 

10 

ТЕХНОЛОГІЇ РОЗРОБКИ ТА СУПРОВОДЖЕННЯ ПРОГРАМНОГО 

ЗАБЕЗПЕЧЕННЯ 
UDC 004.683.01 

Sidorova N.M. 

National Aviation University 

ONTOLOGY-

DRIVEN 

PROGRAMMING 

STYLE 

ASSISTANT

Programming style is the set of guidelines, and 

practices, applicable to a specific language, that are 

used while writing the source code and which are 

intended to introduce the universal look and feel of the 

code, improve understandability of the code and assist 

software engineers to not introduce more mistakes 

while writing code. Programming styles are different 

for different languages. 
To develop the ontology, one must first perform the 

extensive research on the topic, basically a domain 

analysis on the problem, identify the main concepts of 

programming styles, build a hierarchy of them and 

define the relationship between the concepts and their 

members.Ontology-driven programming style assistant 

was developed with the help of Protégé. Ontology 

reasoning is a process in any ontology development to 

ensure that the ontology is of high-quality and does not 

contain any contradictory relations. 

 
For programming styles ontology was choice HermiTreasoner, because it proved to be one of the fastest, reliable and 
widely used reasoners in the current state of things in the ontological domain.Protégé tool also automatically collects 
metrics about the ontologies, which are mostly concerning the numbers of class axioms, object property axioms and 
other important numbers.Ontology development using modern software tools is one of the key problems ontology 
domain. It is important that the users are able to create ontologies with ease and operate with description logic 
expressivity in the very clear and concise manner. 

 

Застосування стилів програмування при написанні програм зараз, у зв'язку з вирішенням завдань 
супроводу і повторного використання программного забезпечення, як і раніше актуально. У статті  
пропонується інструмент для асистування програміста в процесі конструювання программного забезпечення, 
заснований на представленні стилю програмування онтологією. Для реалізації інструменту використовується 
Protégé. Розглянуто технічні питання організації онтології. Виконано дослідження реалізованого інструменту 
і показана його працездатність. 

 

Применение стилей программирования при написании программ сейчас, в связи с решением задач 
сопровождения и повторного использования программного обеспечения, по-прежнему актуально. В статье 
предлагается инструмент для ассистирования программиста в процессе конструирования программного 
обеспечения, основанный на представлении стиля программирования онтологией. Для реализации 
инструмента используется Protégé. Рассмотрены технические вопросы организации онтологии. 
Выполненоисследованиереализованногоинструментаипоказанаегоработоспособность. 

 

Keywords:softwareengineering, programming, programmingstyle, ontology, Protégé, reasoner.

Introduction 

Programming style is the set of guidelines, and 

practices, applicable to a specific language, that are 
used while writing the source code and which are 

intended to introduce the universal look and feel of 

the code, improve understandability of the code 
and assist software engineers to not introduce more 

mistakes while writing code [1]. Programming 

styles are different for different languages. 
What works for one language may not work for 

another due to the language specifics and the 

corresponding code structure. Even within the same 

language there can be a variety of different 
programming styles used for different situations 

and different programmer and differentsoftware 

teams. For example, the particular project team 
(Mozilla developers) may rely in their work on the 

Java official programming style, but they do have 

the list of concepts that is different from the official 

guide and that is universally adopted within their 

project and is fulfilled. This makes up for their own 
programming style and it is no less correct one than 

the official Java style guide.  

During the evolution of the programming styles, 
the following list of relevant concepts was formed: 

white space, indentation, vertical alignment, 

naming conventions, comments, portability, 
meaningfulness, consistency, file structure, 

complexity. Generally, programming style is 

something that software engineers enjoy not to 

address in order to save time and effort while 
developing software applications, as it can be 

challenging to follow the fruitful variety of boring 

guidelines and it usually slows down their work 
significantly.  



ІНЖЕНЕРІЯ ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ 
№ 4 (24) 2015 

 

 

11 

Yet, the years and years of the software 

development have led the community to believe 

that adhering to programming styles is a highly-
beneficial practice which allows to save a lot of 

time and money, since software programs are 

usually supported and used for quite a broad 
periods of time [2]. The more impactful the 

software project is, the more people involved in the 

development are, the more programming styles are 
coming in handy. 

 

Ontology Design 

To develop the ontology, one must first perform 
the extensive research on the topic, basically a 

domain analysis on the problem, identify the main 

concepts of programming styles, build a hierarchy 
of them and define the relationship between the 

concepts and their members.  

The research session has provided the basic 
notions about the programming styles and the 

variety of actual standards to work through [3,4]. 

This allowed to gather actual concepts that later 

will be formed into the programming styles 
ontology and to trace the connections between 

these concepts. We proposed the list of 

programming styles ontology high-level concepts 
(is called ‗classes‘) that is the following: 

Programming Languages, Projects, Standards, 

Style Rules.  

Programming Languages 
It is clear that the programming styles are 

influenced by the languages. A lot of languages 

have code conventions developed for them, 
available in free access and ready for usage. The 

search for programming style conventions allowed 

composing a list of languages, which have official 
or unofficial code conventions developed for them.  

In terms of the ontology, the ‗Programming 

Language‘ is the class, while each specific 

language is considered to be the member of the 

class. For example, Action Script, Ada, C, C++, 

C#, D, Dart, Erlang, Flex, Java, JavaScript, Lisp, 

MATLAB, Mono, Object Pascal, Perl, PHP, 
Python, Shell are the members at the class.All these 

languages have the programming styles associated 

with them.  
Projects 

Programming style guides are not limited to 

languages exclusively.It is also easy to find open-
source standards for various software projects. In a 

lot of cases, the standards for the projects are 

heavily relying on some official language guides, 

but there are cases when the project themselves are 
setting the coding conventions that influence pretty 

much everyone who are working with the 

language. There is quite a big number of 
programing styles and code conventions for the 

projects as well.  

In terms of ontology, ‗Projects‘ are the ontology 
class, while particular projects are treated like the 

members of the class. The list of projects with 

found standards that are being included in the 

ontology is the following: Apache, Drupal, Zend, 
GNU, Google, Linux, Modular, Liquid Web CMS, 

Mozilla, Road Intranet, NetBSD, OpenBSD, 

GNAT,ZeroMQ. 
Standards 

Next step of gathering the data for the ontology 

was choosing the standards and getting familiar 

with their structure and rules, so the domain 
analysis could be finished.  

The standards have different document 

structures, they can be presented to the end user in 
different forms and they can contain the different 

level of detail within them. Such an analysis 

resulted in the need to classify the standards further 
and to introduce sub-classes into the ontology.The 

final structure of the ‗Standards‘ ontology class is 

the following (Fig.1):

 

 Detailed subclass

 Standards  class

 Detaliled subclass  Not Detailed  subclass

 Web format  subclass  PDF format  subclass

 
 

Fig. 1. The structure of the ―Standards‖ ontology class 



ІНЖЕНЕРІЯ ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ 
№ 4 (24) 2015 

 

 

12 

 

The actual standards are bound to become the 

members of the ‗Web format‘ or ‗PDF format‘ 
subclasses. It is important to note that the whole 

point of the ontologies is about defining consistent 

knowledge bases, so this requires to put a disjoint 

restriction between the subclasses of the same 

level while designing the ontology using ontology 
editorthe example ofthe final choice for the 

detailed ontology analysis is on the tab. 1.  

Table 1 
Detailed Analysis Standards 

Standard Language Project 

C# Coding Conventions (C# Programming Guide) 

C# − C# Brad Adams 

Philips Healthcare 

Code Conventions for the Java Programming Language 
Java 

− 

Mozilla Coding Style Guide Mozilla 

Apache Developers' C Language Style Guide 
C 

Apache 

GNU Coding Standards GNU 

The specific rules and guidelines that have 

made it into the ontology for this work are taken 
from the abovementioned standards [5].  

Style Rules 

The work with actual style guide rules is one 
of the most important parts of the ontology 

development, since it is necessary to analyze the 

rules and draw connections between them. The 

code conventions usually have the similar 
structure and the rules themselves are concerning 

the same topics. For example, [5], rule 3@101-use 

us-English for naming identifiers. There are a lot 
of cases where the same rule is described with the 

help of different words and it is highly important 

that for the ontology it is clear whether the rule is 
unique or is there the same rule within any other 

standard. We are to classify the rules. This helps 

to keep the consistency within the ontology 

(which is one of its most important quality 
characteristics) and make sure that there are no 

synonymous members. 

The important step is also to classify the 
programming style rules into concepts, since there 

is clearly a variety of different groups the rules. 

The classification from Philips Healthcare 
standard was taken into account for this ontology 

[5], since it does provide the most comprehensive 

level of logic and detail for the ontology concepts, 

although it was modified a bit, as the standard 
itself missed the file structure section. Majority of 

other standards are using the same structure and 

naming as well.  

The final list of style rule types consists of 10 

elements and is the following: General, Naming, 
Comments, Object Lifecycle, Control Flow, 

Object Oriented, Exceptions, Delegates & Events, 

Data Type, Coding Style & File Structure.The 
style rules themselves are further classified in 

accordance with above mentioned style rule types 

and serve as ontology members or objects within 

the rule types in ‗Style Rule‘ class.  
The problem with style rules is such that the 

descriptions of the rules usually require quite a 

rich amount of sentences. It is clearly not possible 
to use the description themselves because of it as 

the names for the style rules. Also, it is extremely 

hard to choose the short and meaningful name for 
the rule without losing the sense of the rule itself 

and without the risk of the rule sounding too 

similar to the other or being redundant. This has 

called for the need to adopt the numbering 
convention to be able to properly describe the 

style rules within the ontology. 

The table 2 presents some examples of style 
rules with regards to the numbering convention, 

style rule types, their descriptions and connections 

to standards, languages and projects.  
These numbering conventions are further used 

when the ontology is being developed in Protégé 

editor, just as the connections between the rules 

and other ontology elements are established as 
well. 



ІНЖЕНЕРІЯ ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ 
№ 4 (24) 2015 

 

 

13 

Table 2 

Style Rules Examples 

# Description Standard Language Project 

General  

1.1 
Do not mix code from different  
providers in one file 

Philips C# − 

Naming 

2.1 Use US-English for naming identifiers 
Philips C# − 

GNU C GNU 

Comments 

3.1 Each file shall contain a header block Philips C# − 

Object Lifecycle 

4.18 Avoid assigning several variables to the same 

value in a single statement 
Apache  C Apache 

Control Flow 

5.1 Functions should be declared with ANSI-style 

arguments 
Philips C# − 

Object Oriented 

6.1 Do not use embedded assignments in an attempt to 
improve run-time performance. 

Philips C# − 

Exceptions 

7.14 Do not throw an exception from inside an 

exception constructor 
C# Conv C# − 

Delegates & Events 

8.10 Each subscribe must have a corresponding 

unsubscribe 
C# Conv C# − 

Data Types 

9.12 Explicitly declare the types of all objects C# Conv C# − 

Coding Style & File Structure 

10.29 Do not use spaces inside brackets Adams C# − 

Ontology Model 
Prior to developing the ontology using Protégé 

editor, it is vital to establish the proper connections 

between all the classes. In general, it is a popular 
way to model the ontologies using basic UML 

class diagram concepts, so this method was chosen 

to present the ontology structure [6].  

Using the relations, the model for the 
programming styles ontology was 

developed(Fig.2). Note please, that it deals with 

the level of ontology classes and their sub-classes, 
without going down to the detail of the particular 

class members 

 

Classes and 

Members

UML Ontology 

Model

Structure

Tables

Knowledge Base

Uses
Ontology 

Editor
Input Ontology

 
Fig. 2. Programming Styles Ontology Model 



ІНЖЕНЕРІЯ ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ 
№ 4 (24) 2015 

 

 

14 

So, the ontology was presented in the way of 

design tables, as well as in the form of UML 

ontology model that shows the relations of classes 
between each to other. The obtain information is 

significant enough and is comprehensively 

described, that allows to build the programming 
styles ontology using the Protégé ontology editor. 

 

Case study. Ontology Development Using 

Protégé 

Ontology-driven programming style assistant 

was developed with the help of Protégé[7,8]. 

Protégé is an open-source knowledge 
acquisition system, developed by Stanford 

University. Protégé is considered to be the leading 

ontology engineering tool. It provides the means of 
visual ontology modeling. Users can interact with 

the help of the interface to create classes, add 

members, create and assign properties between 

ontology concepts. Protégé also allows generating 

Java code from the ontology models and supports a 

number of languages and ontology representations, 
such as RDF, OWL, XML and so on. 

Just as Protégé allows creating ontologies and 

editing them, it also provides the unique 
opportunities to actually present ontologies in a 

very user-friendly form. Description logic ontology 

form is great for ontology logic purposes, but it is 
hard to read and navigate through [9]. The UML 

ontology form mostly presents the model of the 

ontology, but it certainly lacks any Description 

logic expressivity and in general is lacking details. 
Protégé capabilities allow presenting ontologies no 

worse than a PDF document of web page can. This 

is vital when programmer needs to work with the 
programming styles ontology as the knowledge 

base for his coding needs.The scheme on fig.3 

present the logic of ontology development. 
 

 
 

Fig. 3. Ontology creation process scheme 
 

While creating the ontology in Protégé, there 
are several the following ground rules: 

- classes are sets or collections of objects; 

- members or individuals are the instances of 
the classes – basic components of the ontology; 

- restrictions or assertions help define 

relations between classes and between members; 
- it is impossible for a class to be directly 

related to any other class member;this interaction 

happens solely on the level of class members; 

- object properties are used to set restrictions 
or assertions; 

- annotations help presenting any 
information about ontology the user needs, usually 

it is used to handle descriptions, comments or even 

some examples for the ontologies. 
Protégé also automatically collects metrics, 

which will be presented later. 

Creating the ontology consists of any steps. 
The first step of creating the ontology is 

defining its classes. Fig. 4 presents the 

programming style ontology classes in the view of 

their defined hierarchy. 

 

 
 

Fig.4. Programming styles ontology classes hierarchy 



ІНЖЕНЕРІЯ ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ 
№ 4 (24) 2015 

 

 

15 

The ontology contains classes and sub-classes 

as well. There is no restriction as for the class 

nesting, as long as there are no contradictions or 
inconsistencies caused by this.The specific class 

objects are stored at the level of class members. It 

is worth noting that not all classes contain 

members in this programming styles ontology – 

members usually follow on the lowest level of 

detail.The screenshot is also presenting the 
members view from so-called ‗Classes‘ view in 

the editor (Fig.5). 

 

 
 

Fig.5. ‗Class‘ ontology view with members 
 

Class view within Protégé ontology editor 

deals with all kinds of properties and relations, 
connected in particular to the class view. The 

editor holds a great variety of different interaction 

options for ontology classes. The structure of 
options is the same for each ontology class, 

whereas user himself defines and adds the needed 

options which are logical for this particular class. 
Protégé ontology editor is not bounded by class 

view only. There are a lot of the cases where it is 

much easier to work with members view, and the 

tool presents it with the same easy and intuitive 
user interface. To work with members, ontology 

editor needs to use the ‗Individuals‘ menu, which 

allows seeing the list of members and their 
specific properties but still not losing the 

connection with the classes. 

There is an important point to note about 
members of any subclass of class ‗Style Rules‘. It 

was mentioned before that introduced numbering 

was the only way of somehow maintaining the 

structure of the ontology and do not overload it 
with long and potentially non-meaningful or 

redundant member names. Protégé as an 

instrument contains the powerful feature called 
‗Annotations‘ that allows using ‗comment‘ 

property, where ontology editor can store any 

information about the member or the class. This 
functionality was successfully utilized when 

describing various style rules (Fig.6).  

The final view of style rules concepts in 
ontology editor is such that the name of the 

member consists of ‗<Style Rule><chosen 

designation number>‘. 
The important point not to miss while 

developing the ontology is also the examples of 

code usage, in case that is actually present within 

the standard. Since the goal of the programming 
styles ontology is to allow programmers to easily 

navigate through it and facilitate learning, it is a 

vital point to contain some examples. Protégé 
ontology editor contains the functionality to 

include the examples. Just as ontology should 

resemble the knowledge base structure and 
relations between its elements, it should also be 

informative enough to allow easy learning process 

for any user. 

Protégé also allows creating user-defined 
properties and does not restrict editor with the list 

of available properties. It also separates user-

defined properties from default ones using bold 



ІНЖЕНЕРІЯ ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ 
№ 4 (24) 2015 

 

 

16 

font. This allowed introducing the special, editor- custom ‗example‘ property. 
 

 
 

Fig. 6. Comment and example for ‗Naming‘ class member 

 

Certain properties are related to the classes and 

certain ones are related to members of these 
classes and establish the connection between 

them. It is important that these object properties 

are basically an analog of description logic 
expressivity within the Protégé tool [9]. Instead of 

writing the description logic queries, user can 

easily see all the needed axioms in the form that is 

merciful to a human mind and easily 

understandable. It is important that subclasses are 
inheriting the object properties relations from their 

parent classes or ancestors, which means that 

there is no class in this ontology without the 
relations. The tab.3 presents example of the object 

properties for classes and members defined for the 

domain of programming styles. 

 
Table 3 

Object Properties for Classes 

Class Property 

Programming Languages 
 

Another powerful feature of Protégé tool is the 

so-called ‗usage‘ view, which allows displaying 
instantly where the particular member or class are 

actually used within the ontology (Fig.7). The 

‗usage‘ menu captures all kinds of connections 
between elements and presents them in a user-

friendly form, also allowing a bit of sorting for 

distinguishing between different usage types. It 
also automatically calculates the number of 

occurrences of the particular class within any type 

of relation. 

 

Ontology Reasoning 

Ontology reasoning is a process in any 

ontology development to ensure that the ontology 
is of high-quality and does not contain any 

contradictory relations.  

The Protégé tool supports a rich variety of 

different ontology reasoners as plug-ins, ready to 
download directly using the tool. Once installed, 

any ontology opened in Protégé can be reasoned. 

For programming styles ontology was choice 
HermiTreasoner, because it proved to be one of 

the fastest, reliable and widely used reasoners in 

the current state of things in the ontological 
domain [10]. 

In general, a HermiTreasoner is capable of 

performing such checks as: 
- determine whether a description of the 

concept is not contradictory; 

- determine whether members in ABox do 
not violate descriptions and axioms described by 

TBox; 

- check whether the member is an instance 

of a class; 
- find all members that are instances of a 

class; 

- find all concepts which the member 
belongs to. 

To invoke the reasoner using Protégé, one 

should go to ‗Reasoner‘ menu, choose the needed 

reasoner in the list of available ones and click 
button ‗Start reasoner‘. 

 

 



ІНЖЕНЕРІЯ ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ 
№ 4 (24) 2015 

 

 

17 

 
 

Fig. 7. Example of ‗usage‘ view for the ontology member 

 

Because all ‗Style Rules‘ subclasses are later 

set to be disjoint with each other to make that 
there are no duplicates within the classes, the 

reasoner catches the illogical expression and 

immediately renders the obtained ontology as the 
inconsistent one (Fig.8). 

 

 
 

Fig. 8. Inconsistent ontology class hierarchy 

 

Protégé ontology editor also provides the error 
messages in case the ontology is inconsistent, as it 

logs all issues that occur while tool is being run 
(Fig.9). 

 

 

 

 
 

Fig. 9. Error in inferred ontology 

 



ІНЖЕНЕРІЯ ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ 
№ 4 (24) 2015 

 

 

18 

An important point about reasoners is that it 

also allows drawing connections between objects 

in case there is a sufficient description logic basis 
for it. Such a case was uncovered while working 

with the programming styles ontology as 

well.While the ontology should be consistent and 
ideally there should be no synonyms, there are 

certain cases where elements can be similar in 

their nature, but still be different objects in terms 

of the ontology. 

Protégé tool also automatically collects metrics 
about the ontologies, which are mostly concerning 

the numbers of class axioms, object property 

axioms and other important numbers. 
The programming style ontology metrics 

summary can be found in tab. 4.

 
Table 4 

Programming Style Ontology Metrics 

 
 

Conlusions 
Ontology development using modern software 

tools is one of the key problems ontology domain. 

It is important that the users are able to create 
ontologies with ease and operate with description 

logic expressivity in the very clear and concise 

manner. 
Another important notion is making sure that 

the ontology is consistent, does not contain any 

contradictory notions and hence is high-quality 

and useful for the community. Ontology 

reasoners, usually in the form of plug-ins for the 

ontology editors are helping precisely with that. 

Ontology development itself is more fruitful in 
case the editor is familiar with general principles 

of reasoning and is able to eliminate most of the 

ontology inconsistencies by keeping in mind how 
description logic and reasoning themselves are 

functioning.  



ІНЖЕНЕРІЯ ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ 
№ 4 (24) 2015 

 

 

19 

As the result of ontology development and 

reasoning, the consistent programming styles 

ontology was developed, containing a substantial 
amount of concepts, members and having the 

meaningful connections drawn and verified via 

the help of HermiTreasoner using the Protégé 
ontology editor tool [3, 5]. Even more 

importantly, the developed ontology contains the 

capabilities to use it as the tool to learn 
programming styles, as it supports the description 

of a programming style using annotations, that 

allows it to contain the code snippets examples, 

connected to the rules. 

 

References 

1. Sidorov N.A. Software stylistics [текст] 
/Sidorov N.A.// Proc. of the National Aviation 

University, 2005. – №2. – C.98–103. 

2. Railich V., Wilde N. et. al. Software 
cultures and evolution Computer. – 2001, Sept. – 

Р. 25 – 28. 

3. Sidorova N. N. Programming styles 

taxonomy [текст] /Sidorova N. N.// Наук. 
журнал "Kомп‘ютерно-інтегровані технології: 

освіта, наука, виробництво" – Луцьк.: 

Луцькийнаціональнийтехнічнийуніверсите, № 
19.– 2015.– C. 79–85. 

4. Sidorova N. Ontology-Driven Method 

Using Programming Styles [текст]/ Sidorova N./ 

– ―Інженерія программного забезпечення‖. –
2015. – № 2 (22). –С. 19 – 28. 

5. C# Coding Standard, Version 2.0, Philips 
Healthcare, 2009.– 57р. 

6. Grants E.S. Roadmap to a DO-178C 

Formal Model– Based software Engineering 
Methodology.Proc. of the Intern. Multiconf. Of 

Eng.Comp. Sci. – V.1, IMECS. –March.– 2015. – 

6p. 
7. Sidorov N., Sidorova N. Programming 

style ontology-driven tools.[текст]/ Sidorova N., 

Sidorova N. //Programmable logic integrated 

circuits and microprocessorteehnignein education 
and manufacturing. -abstr. of the Intern. Scient. 

and Pract. Workshop Young Scientists and 

students. –Луцьк. – 28-29.04.2016. – P.100–101. 
8. The description logic handbook Theory, 

implementation, and applications, Ed. by F. 

Baader, Cambridge University Press. – 2003. – 

320 р.  
9. SidorovaN.M.Тheprogrammingstyleontol

ogyassistant. - Тези доповідей Міжнародної 

науково-практичної конференції аспірантів і 
студентів. –Київ. – 2016.–P. 16. 

10. S. Abburu, 

―ASurveyonOntologyReasonersandComparison‖, 
InternationalJournalofComputerApplications 

(0975 – 8887), Volume 57– No.17, November 

2012. 

 

 
Information about author: 

 

 

Sidorova Nika Mykolaivna – postgraduate student of Software Engineering 
Department of the National Aviation University. Scientific interests: software 

engineering, education. 

E-mail: nika.sidorova@livenau.net 

 

 


